Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2304118, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438619

RESUMO

Molybdenum carbides are promising low-cost electrocatalysts for electrolyzers, fuel cells, and batteries. However, synthesis of ultrafine, phase-pure carbide nanoparticles (diameter < 5 nm) with large surface areas remains challenging due to uncontrollable agglomeration that occurs during traditional high temperature syntheses. This work presents a scalable, physical approach to synthesize molybdenum carbide nanoparticles at room temperature by ion implantation. By tuning the implantation conditions, various molybdenum carbide phases, stoichiometries, and nanoparticle sizes can be accessed. For instance, molybdenum ion implantation into glassy carbon at 30 keV energy and to a fluence of 9 × 1016 at cm-2 yields a surface η-Mo3 C2 with a particle diameter of (10 ± 1) nm. Molybdenum implantation into glassy carbon at 60 keV to a fluence of 6 × 1016 at cm-2 yields a buried layer of ultrafine γ'-MoC/η-MoC nanoparticles. Carbon ion implantation at 20 keV into a molybdenum thin film produces a 40 nm thick layer primarily composed of ß-Mo2 C. The formation of nanoparticles in each molybdenum carbide phase is explained based on the Mo-C phase diagram and Monte-Carlo simulations of ion-solid interactions invoking the thermal spike model. The approaches presented are widely applicable for synthesis of other transition metal carbide nanoparticles as well.

2.
Sensors (Basel) ; 23(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177768

RESUMO

Magnetic sensors are key elements in many industrial, security, military, and biomedical applications. Heusler alloys are promising materials for magnetic sensor applications due to their high spin polarization and tunable magnetic properties. The dynamic field range of magnetic sensors is strongly related to the perpendicular magnetic anisotropy (PMA). By tuning the PMA, it is possible to modify the sensing direction, sensitivity and even the accuracy of the magnetic sensors. Here, we report the tuning of PMA in a Co2MnGa Heusler alloy film via argon (Ar) ion irradiation. MgO/Co2MnGa/Pd films with an initial PMA were irradiated with 30 keV 40Ar+ ions with fluences (ions·cm-2) between 1 × 1013 and 1 × 1015 Ar·cm-2, which corresponds to displacement per atom values between 0.17 and 17, estimated from Monte-Carlo-based simulations. The magneto optical and magnetization results showed that the effective anisotropy energy (Keff) decreased from ~153 kJ·m-3 for the un-irradiated film to ~14 kJ·m-3 for the 1 × 1014 Ar·cm-2 irradiated film. The reduced Keff and PMA are attributed to ion-irradiation-induced interface intermixing that decreased the interfacial anisotropy. These results demonstrate that ion irradiation is a promising technique for shaping the PMA of Co2MnGa Heusler alloy for magnetic sensor applications.

3.
J Chem Phys ; 155(12): 124309, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598587

RESUMO

We report an intercluster compound based on co-deposition of the Au cluster [Au9(PPh3)8](NO3)3 and the fulleride KC60(THF). Electronic properties characteristic for a charge interaction between superatoms emerge within the solid state material [Au9(PPh3)8](NO3)3-x(C60)x, as confirmed by UV-VIS and Raman spectroscopy and I-V measurements. These emergent properties are related to the superatomic electronic states of the initial clusters. The material is characterized by Fourier-transform infrared spectroscopy, x-ray diffraction, Raman spectroscopy, and electrical measurements. Structural optimization and ab initio band structure calculations are performed with density functional theory to interpret the nature of the electronic states in the material; Bader charge calculations assign effective oxidation states in support of the superatomic model of cluster interactions.

4.
ACS Appl Mater Interfaces ; 10(22): 18927-18934, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29722256

RESUMO

Nanocrystal-based electronic devices with multiple functionalities offer one avenue toward novel passive and active electronic components. Here, we exhibit a planar and fully air-processed thin film device that demonstrates a photoinduced memristive behavior and can be used as a transistor, photodetector, or memory device. Following long-term (60 h) air exposure, unpackaged nanocrystal films develop reliable memristive characteristics in tandem with temperature, gate, and photoresponse. The on/off values of more than 50 are achieved, and the devices show long-term stability, producing repeatable metrics over days of measurement. The on/off behavior is shown to be dependent on the previous charge flow and carrier density, implying a memristive rather than switching behavior. These observations are described within a long-term trap-filling model. This work represents an advance in the integration of nanocrystal films into electronic devices, which may lead to the development of multifunctional electronic components.

5.
Rev Sci Instrum ; 89(12): 123305, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599550

RESUMO

Modern computing technology is based on silicon. To date, a cost-effective and easy to implement method to obtain isotopically pure silicon is highly desirable for attaining efficient heat dissipation in microelectronic devices and for hosting spin qubits in quantum computing. We propose that it is possible to use a 28Si+ ion beam to obtain an isotopically pure near-surface region in wafer silicon. However, this requires a highly stable, high current, and isotopically pure 28Si ion beam. This work presents and discusses the instrumentation details and experimental parameters involved in generating this required ion beam. Silane is used as the precursor gas and is decomposed in a Penning ion source to generate a 28Si+ ion beam. The influence of key ion source parameters such as the gas flow rate, magnetic field strength, and anode voltage is presented. An isotopically pure 28Si+ ion beam with 10 ± 0.5 µA current on the target is obtained at the GNS Science 40 kV ion implanter. The beam was observed to be stable for at least 8 h and contains less than 700 ppm of other Si isotopes. This high current and high purity provides opportunities to explore efficient modification of the isotopic distribution in a native Si substrate at ambient temperature. The results highlight opportunities offered by using Penning ion source based low energy ion implanters for the synthesis of isotopically modified Si surface regions-a technique also applicable to other materials such as diamonds and diamond-like carbon.

6.
Nanoscale Res Lett ; 8(1): 24, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23311434

RESUMO

We report on and emphasize the versatility of conductive atomic force microscopy in characterizing vertically aligned carbon nanotubes (CNTs) aimed to be used in via interconnect technology. The study is conducted on multi-walled CNT arrays vertically grown on a copper-based metal line. Voltage-dependent current mapping and current-voltage characteristics recorded down to single CNT allow for a comprehensive insight into the electric behaviour of the hybrid structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...