Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Air Soil Pollut ; 228(8): 290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794573

RESUMO

In industry areas of Poland such as Silesia or urban sites like Krakow and some other cities, the levels of pollutants frequently breach air quality standards. Particulate matter (PM) is the most important constituent of atmospheric pollution. Beginning on 1st February 2014 until 31st January 2015, the samples of fine particulate matter PM2.5 (aerodynamic diameter of particles less than or equal to 2.5 µm) were collected at a site in the south-eastern Krakow urban background area. During this period, 194 samples were taken. The samples showed daily variation of PM2.5 concentration. From these data, monthly variations were estimated and presented in this paper. Monthly integrated data are more representative for the Krakow urban background and show seasonal variation of PM2.5 pollution. The lowest monthly concentration value was found for August 2014-about 10 µg m-3, the highest for February 2014-70 µg m-3, whereas the average annual value was about 31 µg/m3. Utilizing X-ray fluorescence method, concentrations of 15 elements for each sample were determined and 8 inorganic ions were analyzed by ion chromatography. Additionally, the samples were analyzed for black carbon (BC). Receptor model PMF (positive matrix factorization) was used for source identification and apportionment. The modeling identified six sources and their quantitative contributions to PM2.5 total mass. The following sources were identified: combustion, secondary nitrate and sulfate, biomass burning, industry or/and soil and traffic. Finally, monthly variations of each source are presented.

2.
Biochim Biophys Acta ; 1817(12): 2095-102, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22921693

RESUMO

We investigate the dynamical properties of the non-heme iron (NHFe) in His-tagged photosynthetic bacterial reaction centers (RCs) isolated from Rhodobacter (Rb.) sphaeroides. Mössbauer spectroscopy and nuclear inelastic scattering of synchrotron radiation (NIS) were applied to monitor the arrangement and flexibility of the NHFe binding site. In His-tagged RCs, NHFe was stabilized only in a high spin ferrous state. Its hyperfine parameters (IS=1.06±0.01mm/s and QS=2.12±0.01mm/s), and Debye temperature (θ(D0)~167K) are comparable to those detected for the high spin state of NHFe in non-His-tagged RCs. For the first time, pure vibrational modes characteristic of NHFe in a high spin ferrous state are revealed. The vibrational density of states (DOS) shows some maxima between 22 and 33meV, 33 and 42meV, and 53 and 60meV and a very sharp one at 44.5meV. In addition, we observe a large contribution of vibrational modes at low energies. This iron atom is directly connected to the protein matrix via all its ligands, and it is therefore extremely sensitive to the collective motions of the RC protein core. A comparison of the DOS spectra of His-tagged and non-His-tagged RCs from Rb. sphaeroides shows that in the latter case the spectrum was overlapped by the vibrations of the heme iron of residual cytochrome c(2), and a low spin state of NHFe in addition to its high spin one. This enabled us to pin-point vibrations characteristic for the low spin state of NHFe.


Assuntos
Ferro/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Sítios de Ligação , Transporte de Elétrons , Ferro/metabolismo , Cinética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/metabolismo , Espectroscopia de Mossbauer , Síncrotrons , Vibração
3.
Biochim Biophys Acta ; 1797(10): 1696-704, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20603098

RESUMO

Non-heme iron is a conservative component of type II photosynthetic reaction centers of unknown function. We found that in the reaction center from Rba. sphaeroides it exists in two forms, high and low spin ferrous states, whereas in Rsp. rubrum mostly in a low spin state, in line with our earlier finding of its low spin state in the algal photosystem II reaction center (Burda et al., 2003). The temperature dependence of the non-heme iron displacement studied by Mössbauer spectroscopy shows that the surrounding of the high spin iron is more flexible (Debye temperature ~165K) than that of the low spin atom (~207K). Nuclear inelastic scattering measurements of the collective motions in the Rba. sphaeroides reaction center show that the density of vibrational states, originating from non-heme iron, has well-separated modes between lower (4-17meV) and higher (17-25meV) energies while in the one from Rsp. rubrum its distribution is more uniform with only little contribution of low energy (~6meV) vibrations. It is the first experimental evidence that the fluctuations of the protein matrix in type II reaction center are correlated to the spin state of non-heme iron. We propose a simple mechanism in which the spin state of non-heme iron directly determines the strength of coupling between the two quinone acceptors (Q(A) and Q(B)) and fast collective motions of protein matrix that play a crucial role in activation and regulation of the electron and proton transfer between these two quinones. We suggest that hydrogen bond network on the acceptor side of reaction center is responsible for stabilization of non-heme iron in different spin states.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Ferro/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Ferro/metabolismo , Cinética , Modelos Químicos , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Prótons , Quinonas/química , Quinonas/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Rhodospirillum rubrum/química , Rhodospirillum rubrum/metabolismo , Espectroscopia de Mossbauer , Temperatura , Vibração
4.
Photochem Photobiol ; 74(1): 64-71, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11460539

RESUMO

Carotenoids are well-known physical quenchers of chlorophyll excited states and reactive oxygen species both in vivo and in vitro. They may also be involved in chemical quenching undergoing, e.g. isomerizations or oxidations. We have found that beta-carotene (Car) in aerobic acetone is rapidly oxygenated under strong illumination with red light (lambda exc > or = 630 nm) in the presence of bacteriopheophytin a. At the same time the photosensitizer undergoes only slight (< 10%) photodegradation. By preparative high-performance liquid chromatography as many as seven major products of oxygen attachment to Car have been isolated. Their molecular masses show that Car sequentially accumulates up to six oxygen atoms while its C40-skeleton remains intact.


Assuntos
Bacterioclorofilas/efeitos da radiação , beta Caroteno/efeitos da radiação , Acetona , Bacterioclorofilas/química , Espectrometria de Massas , Oxirredução , Fotoquímica , beta Caroteno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...