Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947248

RESUMO

The paper presents results of our studies on hybrid materials based on polymers of natural origin containing superparamagnetic iron oxide nanoparticles (SPIONs). Such nanoparticles, coated with the chitosan derivative, were immobilized in a chitosan-collagen hydrogel matrix by crosslinking with genipin. Three types of biopolymer matrices of different collagen-to-chitosan ratios were studied. A thorough magnetic characterization was performed, including magnetic susceptibility, magnetization, and hysteresis loop measurements in a temperature range of 4 K to 300 K and a magnetic field induction up to 8 Tesla. The effect of SPION immobilization and material composition on the magnetic properties of the hybrids was investigated. The results showed that hybrid materials with covalently bounded SPIONs preserved the superparamagnetic character of SPIONs and exhibited promising magnetic properties, which are important for their potential applications.

2.
Materials (Basel) ; 12(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163583

RESUMO

In this article, the results of a study of the magnetic dynamics of superparamagnetic iron oxide nanoparticles (SPIONs) with chitosan and polyethylene glycol (PEG) coatings are reported. The materials were prepared by the co-precipitation method and characterized by X-ray diffraction, dynamic light scattering and scanning transmission electron microscopy. It was shown that the cores contain maghemite, and their hydrodynamic diameters vary from 49 nm for PEG-coated to 200 nm for chitosan-coated particles. The magnetic dynamics of the nanoparticles in terms of the function of temperature was studied with magnetic susceptometry and Mössbauer spectroscopy. Their superparamagnetic fluctuations frequencies, determined from the fits of Mössbauer spectra, range from tens to hundreds of megahertz at room temperature and mostly decrease in the applied magnetic field. For water suspensions of nanoparticles, maxima are observed in the absorption part of magnetic susceptibility and they shift to higher temperatures with increasing excitation frequency. A step-like decrease of the susceptibility occurs at freezing, and from that, the Brown's and Néel's contributions are extracted and compared for nanoparticles differing in core sizes and types of coating. The results are analyzed and discussed with respect to the tailoring of the dynamic properties of these nanoparticle materials for requirements related to the characteristic frequency ranges of MRI and electromagnetic field hyperthermia.

3.
ACS Appl Mater Interfaces ; 11(11): 10905-10913, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30810298

RESUMO

Polymer core-shell nanocapsules with magnetic nanoparticles embedded in their oil cores were fabricated and applied as nano(photo)reactors. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with oleic acid were first synthesized and characterized structurally, and their magnetic properties were determined. The capsules with chitosan-based shells were then formed in a one-step process by sonication-assisted mixing of (1) an aqueous solution of the hydrophobically derived chitosan and (2) oleic acid containing the dispersed SPIONs. In this way, magnetic capsules with a diameter of approximately 500-600 nm containing encapsulated SPIONs with an average diameter of approximately 20-30 nm were formed as revealed by dynamic light scattering and scanning transmission electron microscopy measurements. The composition and magnetic properties of the formed capsules were also followed using dynamic light scattering, electron microscopies, and magnetic force microscopy. The water-dispersible capsules, thanks to their magnetic properties, were then navigated in a static magnetic field gradient and transferred between the water and oil phases, as evidenced by fluorescence microscopy. In this way, the capsules could be loaded in a controlled way with a hydrophobic reactant, perylene, which was later photooxidized upon transferring the capsules to the aqueous phase. The capsules were shown to serve as robust reloadable nanoreactors/nanocontainers that via magnetic navigation can be transferred between immiscible phases without disruption. These features make them promising reusable systems not only for loading and carrying lipophilic actives, conducting useful reactions in the confined environment of the capsules, but also for magnetically separating and guiding the encapsulated active molecules to the site of action.

4.
Materials (Basel) ; 11(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572682

RESUMO

The utilization of used crosslinked functional polymers (CFP) applied as sorbents or ion-exchangers is a great challenge arising from the need to protect the environment. In this paper we report a very promising way of obtaining carbon/magnetic composites based on metal (Co2+; Ni2+; Fe3+) derivatives of butadiene rubber-based phosphorus-containing polymer, which were treated as the model used CFP. We proposed a facile one-step thermal degradation approach to transform used CFP into carbon/magnetic composites (CMC). The obtained CMCs contained a mixture of metal phosphates and metal phosphides that exhibited strong magnetic properties due to the presence of nanosized metal derivatives with diameters of 100⁻140 nm. Structural and morphological changes of CFP and CMC after thermal degradation were investigated by the FTIR technique, X-ray Diffraction analysis, Scanning Electron Microscope, and Atomic Force Microscope⁻Magnetic Force Microscope. Moreover, thermal degradation kinetics parameters were determined to optimize the efficiency of the process.

5.
J Colloid Interface Sci ; 524: 102-113, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635083

RESUMO

When designing materials for tissue engineering applications various parameters characterizing both materials and tissue have to be taken into account. The characteristics such as chemistry, elasticity, wettability, roughness and morphology of the substrate's surface have significant impact on cell behavior. The paper presents biopolymer (collagen/chitosan) based hydrogel materials with tunable elasticity and surface properties useful for fabrication of substrates for cell culture. Using simple chemical approach involving the change in concentration of crosslinking agent (genipin) and composition of the reaction mixture the hydrogels characterized with various features were obtained. Detailed analysis of morphology, topography, roughness and elasticity of surface performed using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and rheological measurements has shown that the topographical aspects and roughness parameter can be modulated in nanoscale regime (13-47 nm). Substrate's elasticity could be modified in a wide range (0.2-270 kPa). Biological in vitro studies on fibroblasts behavior revealed that the materials prepared provide satisfactory conditions for cell culture, ensuring their high viability, good adhesion and normal morphology. The genipin crosslinked collagen-chitosan hydrogels characterized by denser fiber structure, higher elasticity and lower surface roughness are the most attractive supports for fibroblasts cultivation. The results obtained indicate that the properties of the materials developed can be easily tailored to the needs of the given type of cells.

6.
J Mater Sci Mater Med ; 26(9): 231, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26347455

RESUMO

The organic-inorganic hybrid systems based on biopolymer hydrogels with dispersed silica nanoparticles were obtained and characterized in terms of their physicochemical properties, cytocompatibility and bioactivity. The hybrid materials were prepared in a form of collagen and collagen-chitosan sols to which the silica nanoparticles of two different sizes were incorporated. The ability of these materials to undergo in situ gelation under physiological temperature was assessed by microviscosity and gelation time determination based on steady-state fluorescence anisotropy measurements. The effect of silica nanoparticles addition on the physicochemical properties (surface wettability, swellability) of hybrid materials was analyzed and compared with those characteristic for pristine collagen and collagen-chitosan hydrogels. Biological studies indicate that surface wettability determined in terms of contact angle for all of the hybrids prepared is optimal and thus can provide satisfactory adhesion of fibroblasts. Cytotoxicity test results showed high metabolic activity of mouse as well as human fibroblast cell lines cultured on hybrid materials. The composition of hybrids was optimized in terms of concentration of silica nanoparticles. The effect of silica on the formation of bone-like mineral structures on exposition to simulated body fluid was determined. SEM images revealed mineral phase formation not only at the surfaces but also in the whole volumes of all hybrid materials developed suggesting their usefulness for bone tissue engineering. EDS and FTIR analyses indicated that these mineral phases consist of apatite-like structures.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Engenharia Tecidual , Alicerces Teciduais , Animais , Células Cultivadas , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Biomed Mater ; 10(1): 015020, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25668107

RESUMO

Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.


Assuntos
Osso e Ossos/patologia , Hidrogéis/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Adesão Celular , Sobrevivência Celular , Colágeno Tipo I/química , Fibroblastos/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Luz , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Ratos , Espalhamento de Radiação , Pele/metabolismo , Alicerces Teciduais/química , Difração de Raios X
8.
J Nanopart Res ; 16(11): 2678, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25328426

RESUMO

Dual-mode MRI contrast agents consisting of superparamagnetic iron oxide nanoparticle (SPION) cores and gadolinium ions associated with the ionic chitosan protecting layer were synthesized and studied. Gadolinium ions were introduced into the coating layer via direct complex formation on the nanoparticles surface, covalent attachment or electrostatically driven deposition of the preformed Gd complex. The modified SPIONs having hydrodynamic diameters ca. 100 nm form stable, well-defined dispersions in water and have excellent magnetic properties. Physiochemical properties of those new materials were characterized using e.g., FTIR spectroscopy, dynamic light scattering, X-ray fluorescence, TEM, and vibrating sample magnetometry. They behave as superparamagnetics and shorten both T1 and T2 proton relaxation times, thus influencing both r1 and r2 relaxivity values that reach 53.7 and 375.5 mM-1 s-1, respectively, at 15 MHz. The obtained materials can be considered as highly effective contrast agents for low-field MRI, particularly useful at permanent magnet-based scanners.

9.
Biomed Mater ; 8(3): 035013, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23629621

RESUMO

The progress in tissue regeneration is strongly dependent on the development of biocompatible materials with properties resembling those of a native tissue. Also, the application of noninvasive methods of delivering the scaffold into the tissue defect is of great importance. In this study we present a group of biopolymer-based materials as potential injectable scaffolds. In contrast to other studies involving collagen neutralization or additional incubation of gel in genipin solution, we propose collagen and collagen-chitosan gels crosslinked in situ with genipin. Since some parameters of the cells should be considered in the microscale, the steady-state fluorescence anisotropy was applied to study the microenvironment of the gels. To our knowledge we are the first to report on microrheological properties, such as gel time and microviscosity, for this group of hydrogels. Rapid gelation at physiological temperatures found makes these materials of special interest in applications requiring gel injectability. Physico-chemical investigation showed the influence of the crosslinking agent concentration and chitosan addition on the crosslinking degree, swelling ratio, gel microviscosity, and the degradation rate. Strong correlation was revealed between the surface wettability and the viability of cultured mesenchymal stem cells. Cytotoxicity studies indicated that the collagen-chitosan hydrogels showed the best biocompatibility.


Assuntos
Biopolímeros/administração & dosagem , Biopolímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Sobrevivência Celular , Quitosana/química , Colágeno/química , Reagentes de Ligações Cruzadas , Polarização de Fluorescência , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Injeções , Iridoides , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Regeneração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...