Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(3): 453-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237269

RESUMO

During 2022, a global outbreak of mpox resulted primarily from human-to-human contact. The Virginia Department of Health (Richmond, VA, USA) implemented a contact tracing and symptom monitoring system for residents exposed to monkeypox virus, assessed their risk for infection, and offered interventions as needed. Among 991 contacts identified during May 1-November 1, 2022, import records were complete for 943 (95.2%), but 99 (10.0%) were not available for follow-up during symptom monitoring. Mpox developed in 28 (2.8%) persons; none were healthcare workers exposed at work (n = 275). Exposure risk category and likelihood of developing mpox were strongly associated. A total of 333 persons received >1 dose of JYENNOS (Bavarian Nordic, https://www.bavarian-nordic.com) vaccine, most (n = 295) administered after virus exposure. Median time from exposure to vaccination was 8 days. Those data tools provided crucial real-time information for public health responses and can be used as a framework for other emerging diseases.


Assuntos
Mpox , Humanos , Virginia/epidemiologia , Busca de Comunicante , Surtos de Doenças , Pessoal de Saúde
2.
Front Insect Sci ; 3: 1144072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469495

RESUMO

Mosquitoes are the most important animal vector of disease on the planet, transmitting a variety of pathogens of both medical and veterinary importance. Mosquito-borne diseases display distinct seasonal patterns driven by both environmental and biological variables. However, an important, yet unexplored component of these patterns is the potential for seasonal influences on mosquito physiology that may ultimately influence vector competence. To address this question, we selected Culex pipiens, a primary vector of the West Nile virus (WNV) in the temperate United States, to examine the seasonal impacts on mosquito physiology by examining known immune and bacterial components implicated in mosquito arbovirus infection. Semi-field experiments were performed under spring, summer, and late-summer conditions, corresponding to historically low-, medium-, and high-intensity periods of WNV transmission, respectively. Through these experiments, we observed differences in the expression of immune genes and RNA interference (RNAi) pathway components, as well as changes in the distribution and abundance of Wolbachia in the mosquitoes across seasonal cohorts. Together, these findings support the conclusion that seasonal changes significantly influence mosquito physiology and components of the mosquito microbiome, suggesting that seasonality may impact mosquito susceptibility to pathogen infection, which could account for the temporal patterns in mosquito-borne disease transmission.

3.
Commun Biol ; 5(1): 1300, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36435882

RESUMO

Reproductive diapause serves as biological mechanism for many insects, including the mosquito Culex pipiens, to overwinter in temperate climates. While Cx. pipiens diapause has been well-studied in the laboratory, the timing and environmental signals that promote diapause under natural conditions are less understood. In this study, we examine laboratory, semi-field, and mosquito surveillance data to define the approximate timeline and seasonal conditions that contribute to Cx. pipiens diapause across the United States. While confirming integral roles of temperature and photoperiod in diapause induction, we also demonstrate the influence of latitude, elevation, and mosquito population genetics in shaping Cx. pipiens diapause incidence across the country. Coinciding with the cessation of WNV activity, these data can have important implications for mosquito control, where targeted efforts prior to diapause induction can decrease mosquito populations and WNV overwintering to reduce mosquito-borne disease incidence the following season.


Assuntos
Culex , Diapausa , Animais , Estados Unidos/epidemiologia , Culex/genética , Diapausa/genética , Estações do Ano , Reprodução , Temperatura
4.
Insects ; 13(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135459

RESUMO

Since its introduction to North America in 1999, the West Nile virus (WNV) has resulted in over 50,000 human cases and 2400 deaths. WNV transmission is maintained via mosquito vectors and avian reservoir hosts, yet mosquito and avian infections are not uniform across ecological landscapes. As a result, it remains unclear whether the ecological communities of the vectors or reservoir hosts are more predictive of zoonotic risk at the microhabitat level. We examined this question in central Iowa, representative of the midwestern United States, across a land use gradient consisting of suburban interfaces with natural and agricultural habitats. At eight sites, we captured mosquito abundance data using New Jersey light traps and monitored bird communities using visual and auditory point count surveys. We found that the mosquito minimum infection rate (MIR) was better predicted by metrics of the mosquito community than metrics of the bird community, where sites with higher proportions of Culex pipiens group mosquitoes during late summer (after late July) showed higher MIRs. Bird community metrics did not significantly influence mosquito MIRs across sites. Together, these data suggest that the microhabitat suitability of Culex vector species is of greater importance than avian community composition in driving WNV infection dynamics at the urban and agricultural interface.

5.
Sci Rep ; 12(1): 2143, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136169

RESUMO

Aedes albopictus is a competent vector of several arboviruses that has spread throughout the United States over the last three decades. With the emergence of Zika virus in the Americas in 2015-2016 and an increased need to understand the current distributions of Ae. albopictus in the US, we initiated surveillance efforts to determine the abundance of invasive Aedes species in Iowa. Here, we describe surveillance efforts from 2016 to 2020 in which we detect stable and persistent populations of Aedes albopictus in three Iowa counties. Based on temporal patterns in abundance and genetic analysis of mitochondrial DNA haplotypes between years, our data support that Ae. albopictus are overwintering and have likely become established in the state. The localization of Ae. albopictus predominantly in areas of urbanization, and noticeable absence in rural areas, suggests that these ecological factors may contribute to overwintering success. Together, these data document the establishment of Ae. albopictus in Iowa and their expansion into the Upper Midwest, where freezing winter temperatures were previously believed to limit their spread. With impending climate change, our study provides evidence for the further expansion of Ae. albopictus into temperate regions of the United States resulting in increased risks for vector-borne disease transmission.


Assuntos
Aedes , Espécies Introduzidas , Aedes/genética , Animais , Temperatura Baixa , Iowa , Dinâmica Populacional
6.
J Med Entomol ; 57(2): 557-562, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31637428

RESUMO

The analysis of vertebrate blood meals serves as an integral component of vector incrimination studies where feeding preferences and host associations influence vector-borne disease transmission. Diagnostic polymerase chain reaction (PCR)-based techniques have been widely used to determine host associations, yet applications for Culex (Diptera: Culicidae), which feed primarily on bird populations, have been limited by multistep PCR techniques that approach each potential host species singly. As a result, we have developed a multiplexed primer set targeting mitochondrial cytochrome b sequences that can distinguish human, bird, and mammalian host blood meals in a single PCR reaction, an improvement over previous analyses relying on single primers or other multiplex primer approaches through the inclusion of avian primers. To validate this new methodology, we demonstrate its application on blood samples as well as field-collected Culex samples. Although designed for applications with mosquito vectors, this multiplex PCR assay is not mosquito-specific, and should serve as a valuable tool for identifying the blood meals of other blood-feeding arthropods, contributing greatly to the study of vector-borne disease.


Assuntos
Aves/sangue , Culex/química , Mamíferos/sangue , Reação em Cadeia da Polimerase Multiplex/métodos , Animais , Dieta , Entomologia/métodos , Comportamento Alimentar , Feminino , Cadeia Alimentar , Humanos
7.
Insects ; 10(9)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450570

RESUMO

The ecology and environmental conditions of a habitat have profound influences on mosquito population abundance. As a result, mosquito species vary in their associations with particular habitat types, yet long-term studies showing how mosquito populations shift in a changing ecological landscape are lacking. To better understand how land use changes influence mosquito populations, we examined mosquito surveillance data over a thirty-four-year period for two contrasting sites in central Iowa. One site displayed increasing levels of urbanization over time and a dramatic decline in Culex pipiens group (an informal grouping of Culex restuans, Culex pipiens, and Culex salinarius, referred to as CPG), the primary vectors of West Nile virus in central Iowa. Similar effects were also shown for other mosquito vector populations, yet the abundance of Aedes vexans remained constant during the study period. This is in contrast to a second site, which reflected an established urban landscape. At this location, there were no significant changes in land use and CPG populations remained constant. Climate data (temperature, total precipitation) were compiled for each location to see if these changes could account for altered population dynamics, but neither significantly influence CPG abundance at the respective site locations. Taken together, our data suggest that increased landscape development can have negative impacts on Culex vector populations, and we argue that long-term surveillance paired with satellite imagery analysis are useful methods for measuring the impacts of rapid human development on mosquito vector communities. As a result, we believe that land use changes can have important implications for mosquito management practices, population modeling, and disease transmission dynamics.

8.
Sci Rep ; 9(1): 6637, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036953

RESUMO

West Nile virus (WNV) has become the most epidemiologically important mosquito-borne disease in the United States, causing ~50,000 cases since its introduction in 1999. Transmitted primarily by Culex species, WNV transmission requires the complex interplay between bird reservoirs and mosquito vectors, with human cases the result of epizootic spillover. To better understand the intrinsic factors that drive these interactions, we have compiled infection data from sentinel chickens, mosquito vectors, and human cases in Iowa over a 15 year period (2002-2016) to better understand the spatial and temporal components that drive WNV transmission. Supplementing these findings with mosquito abundance, distribution, and host preferences data, we provide strong support that Culex tarsalis is the most important vector of human WNV infections in the region. Together, our analysis provides new insights into WNV infection patterns in multiple hosts and highlights the importance of long-term surveillance to understand the dynamics of mosquito-borne-disease transmission.


Assuntos
Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/patogenicidade , Animais , Galinhas , Culicidae/virologia , Feminino , Humanos , Insetos Vetores/virologia , Mosquitos Vetores , Estudos Soroepidemiológicos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...