Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 61(1-3): 68-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20106492

RESUMO

When the first MPB special issue was published 25 years ago it was suggested that high body burdens of metals and selected organic pollutants in the Severn Estuary were the result of anthropogenic loadings from a variety of sources. The objective of this synopsis is to illustrate recent trends for contaminants (metals, PAHs, PCBs) in sediments and benthic biota and to consider the evidence for improved environmental quality over the last quarter of a century. Contaminants in sediments and sediment-dwelling fauna such as Hediste(=Nereis)diversicolor are, generally, evenly distributed over the estuary - which is the consequence of extensive re-suspension and redistribution of fine sediment by strong tidal currents. Such dispersal tends to mask the influences of individual discharges and physical characteristics are considered to be the major drivers affecting biodiversity in the Severn Estuary, often overshadowing contaminant concerns. Following the closure of major industries and the introduction of stricter pollution control, many inputs have ceased or been reduced and there are indications that environmental concentrations are now lower. Bioaccumulation of most contaminants has declined accordingly (with the possible exception of Cr). Intuitively, better environmental quality should be linked to ecological improvements. However, due to the dynamic nature of the system (and a lack of biological-effects data) it is difficult to establish direct relationships between inputs, body burdens and biological/ecological consequence. Uniquely, the long-term integrated monitoring program of AstraZeneca (Avonmouth) indicates that recovery of faunal diversity and abundance has occurred in mid-sections of the estuary in recent years implying that contaminants have indeed been a forcing feature for Severn biota. In this context, we highlight contaminant issues and biogeochemical changes which may need to be addressed in connection with the development of proposals for tidal energy schemes.


Assuntos
Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Rios , Água do Mar , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Amônia/análise , Biodiversidade , Metais/análise , Metais/toxicidade , Desenvolvimento Vegetal , Plantas/efeitos dos fármacos , Plantas/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Radioisótopos/análise , Radioisótopos/toxicidade , Fatores de Tempo , Reino Unido , Movimentos da Água
2.
J Neurosci ; 22(17): 7326-30, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12196553

RESUMO

Disruption of the circadian timing system arising from travel between time zones ("jet lag") and rotational shift work impairs mental and physical performance and severely compromises long-term health. Circadian disruption is more severe during adaptation to advances in local time, because the circadian clock takes much longer to phase advance than delay. The recent identification of mammalian circadian clock genes now makes it possible to examine time zone adjustments from the perspective of molecular events within the suprachiasmatic nucleus (SCN), the principal circadian oscillator. Current models of the clockwork posit interlocked transcriptional/post-translational feedback loops based on the light-sensitive Period (Per) genes and the Cryptochrome (Cry) genes, which are indirectly regulated by light. We show that circadian cycles of mPer expression in the mouse SCN react rapidly to an advance in the lighting schedule, whereas rhythmic mCry1 expression advances more slowly, in parallel to the gradual resetting of the activity-rest cycle. In contrast, during a delay in local time the mPer and mCry cycles react rapidly, completing the 6 hr shift together by the second cycle, in parallel with the activity-rest cycle. These results reveal the potential for dissociation of mPer and mCry expression within the central oscillator during circadian resetting and a differential molecular response of the clock during advance and delay resetting. They highlight the indirect photic regulation of mCry1 as a potentially rate-limiting factor in behavioral adjustment to time zone transitions.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila , Proteínas do Olho , Regulação da Expressão Gênica , Síndrome do Jet Lag/fisiopatologia , Células Fotorreceptoras de Invertebrados , Núcleo Supraquiasmático/fisiopatologia , Análise de Variância , Animais , Relógios Biológicos , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Ritmo Circadiano/fisiologia , Criptocromos , Modelos Animais de Doenças , Flavoproteínas/genética , Flavoproteínas/metabolismo , Hibridização In Situ , Síndrome do Jet Lag/patologia , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Periodicidade , Fotoperíodo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G , Núcleo Supraquiasmático/patologia , Fatores de Tempo , Fatores de Transcrição
3.
Neuron ; 25(2): 437-47, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10719897

RESUMO

The circadian clock in the suprachiasmatic nuclei (SCN) is comprised of a cell-autonomous, autoregulatory transcriptional/translational feedback loop. Its molecular components include three period and two cryptochrome genes. We describe circadian patterns of expression of mPER2 and mPER3 in the mouse SCN that are synchronous to those for mPER1, mCRY1, and mCRY2. Coimmunoprecipitation experiments demonstrate in vivo associations of the SCN mPER proteins with each other and with the mCRY proteins, and of mCRY proteins with mTIM, but no mPER/mTIM interactions. Examination of the effects of weak and strong resetting light pulses on SCN clock proteins highlights a central role for mPER1 in photic entrainment, with no acute light effects on either the mCRY or mTIM proteins. These clock protein interactions and photic responses in mice are divergent from those described in Drosophila.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila , Proteínas do Olho , Proteínas Nucleares/genética , Células Fotorreceptoras de Invertebrados , Filogenia , Animais , Proteínas de Ciclo Celular , Criptocromos , Drosophila , Flavoproteínas/análise , Flavoproteínas/genética , Expressão Gênica/fisiologia , Variação Genética , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas Nucleares/análise , Proteínas Circadianas Period , Estimulação Luminosa , RNA Mensageiro/análise , Receptores Acoplados a Proteínas G , Núcleo Supraquiasmático/química , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição
4.
Proc Natl Acad Sci U S A ; 96(26): 15211-6, 1999 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-10611364

RESUMO

The pervasive role of circadian clocks in regulating physiology and behavior is widely recognized. Their adaptive value is their ability to be entrained by environmental cues such that the internal circadian phase is a reliable predictor of solar time. In mammals, both light and nonphotic behavioral cues can entrain the principal oscillator of the hypothalamic suprachiasmatic nuclei (SCN). However, although light can advance or delay the clock during circadian night, behavioral events trigger phase advances during the subjective day, when the clock is insensitive to light. The recent identification of Period (Per) genes in mammals, homologues of dperiod, which encodes a core element of the circadian clockwork in Drosophila, now provides the opportunity to explain circadian timing and entrainment at a molecular level. In mice, expression of mPer1 and mPer2 in the SCN is rhythmic and acutely up-regulated by light. Moreover, the temporal relations between mRNA and protein cycles are consistent with a clock based on a transcriptional/translational feedback loop. Here we describe circadian oscillations of Per1 and Per2 in the SCN of the Syrian hamster, showing that PER1 protein and mRNA cycles again behave in a manner consistent with a negative-feedback oscillator. Furthermore, we demonstrate that nonphotic resetting has the opposite effect to light: acutely down-regulating these genes. Their sensitivity to nonphotic resetting cues supports their proposed role as core elements of the circadian oscillator. Moreover, this study provides an explanation at the molecular level for the contrasting but convergent effects of photic and nonphotic cues on the clock.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Proteínas Nucleares/biossíntese , Núcleo Supraquiasmático/metabolismo , Animais , Nível de Alerta/fisiologia , Proteínas de Ciclo Celular , Cricetinae , Regulação para Baixo , Hibridização In Situ , Masculino , Mesocricetus , Camundongos , Atividade Motora/fisiologia , Proteínas Nucleares/genética , Proteínas Circadianas Period , RNA Mensageiro/isolamento & purificação , Fatores de Transcrição
5.
J Neurosci ; 19(12): RC11, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10366649

RESUMO

Recent discoveries have identified a framework for the core circadian clock mechanism in mammals. Development of this framework has been based entirely on the expression patterns of so-called "clock genes" in the suprachiasmatic nuclei (SCN), the principal clock of mammals. We now provide data concerning the protein expression patterns of two of these genes, mPer1 and mTim. Our studies show that mPER1 and mTIM are nuclear antigens expressed in the SCN and extensively throughout the forebrain. Expression of mPER1 in the SCN was rhythmic under entrained conditions and with clear circadian cycling under free-running conditions. Expression of mPER1 elsewhere in the mouse forebrain was not rhythmic. In contrast to mPER1, mTIM expression in the SCN did not vary with time in mice housed in either a light/dark cycle or in constant dim red light. The phase relationship between mPer1 RNA and mPER1 cycles in the SCN is consistent with a negative feedback model of the mammalian clock. The invariant nature of nuclear mTIM in the SCN suggests that its participation in negative feedback occurs only after mPER1 has entered the nucleus, and that the abundance of mTIM is not regulated by the circadian clock or the light/dark cycle.


Assuntos
Ritmo Circadiano , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos ICR , Proteínas Nucleares/genética , Especificidade de Órgãos , Proteínas Circadianas Period , Hipófise/metabolismo , Hipófise/ultraestrutura , Núcleo Supraquiasmático/ultraestrutura , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...