Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Viruses ; 15(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37243279

RESUMO

SARS-CoV-2 lineages and variants of concern (VOC) have gained more efficient transmission and immune evasion properties with time. We describe the circulation of VOCs in South Africa and the potential role of low-frequency lineages on the emergence of future lineages. Whole genome sequencing was performed on SARS-CoV-2 samples from South Africa. Sequences were analysed with Nextstrain pangolin tools and Stanford University Coronavirus Antiviral & Resistance Database. In 2020, 24 lineages were detected, with B.1 (3%; 8/278), B.1.1 (16%; 45/278), B.1.1.348 (3%; 8/278), B.1.1.52 (5%; 13/278), C.1 (13%; 37/278) and C.2 (2%; 6/278) circulating during the first wave. Beta emerged late in 2020, dominating the second wave of infection. B.1 and B.1.1 continued to circulate at low frequencies in 2021 and B.1.1 re-emerged in 2022. Beta was outcompeted by Delta in 2021, which was thereafter outcompeted by Omicron sub-lineages during the 4th and 5th waves in 2022. Several significant mutations identified in VOCs were also detected in low-frequency lineages, including S68F (E protein); I82T (M protein); P13L, R203K and G204R/K (N protein); R126S (ORF3a); P323L (RdRp); and N501Y, E484K, D614G, H655Y and N679K (S protein). Low-frequency variants, together with VOCs circulating, may lead to convergence and the emergence of future lineages that may increase transmissibility, infectivity and escape vaccine-induced or natural host immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , SARS-CoV-2/genética , COVID-19/epidemiologia , Epidemiologia Molecular , Bases de Dados Factuais , Farmacorresistência Viral , Mutação , Pangolins , Glicoproteína da Espícula de Coronavírus
3.
PLoS One ; 18(5): e0286373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253027

RESUMO

Intra-host diversity studies are used to characterise the mutational heterogeneity of SARS-CoV-2 infections in order to understand the impact of virus-host adaptations. This study investigated the frequency and diversity of the spike (S) protein mutations within SARS-CoV-2 infected South African individuals. The study included SARS-CoV-2 respiratory samples, from individuals of all ages, received at the National Health Laboratory Service at Charlotte Maxeke Johannesburg Academic hospital, Gauteng, South Africa, from June 2020 to May 2022. Single nucleotide polymorphism (SNP) assays and whole genome sequencing were performed on a random selection of SARS-CoV-2 positive samples. The allele frequency (AF) was determined using TaqMan Genotyper software for SNP PCR analysis and galaxy.eu for analysis of FASTQ reads from sequencing. The SNP assays identified 5.3% (50/948) of Delta cases with heterogeneity at delY144 (4%; 2/50), E484Q (6%; 3/50), N501Y (2%; 1/50) and P681H (88%; 44/50), however only heterogeneity for E484Q and delY144 were confirmed by sequencing. From sequencing we identified 9% (210/2381) of cases with Beta, Delta, Omicron BA.1, BA.2.15, and BA.4 lineages that had heterogeneity in the S protein. Heterogeneity was primarily identified at positions 19 (1.4%) with T19IR (AF 0.2-0.7), 371 (92.3%) with S371FP (AF 0.1-1.0), and 484 (1.9%) with E484AK (0.2-0.7), E484AQ (AF 0.4-0.5) and E484KQ (AF 0.1-0.4). Mutations at heterozygous amino acid positions 19, 371 and 484 are known antibody escape mutations, however the impact of the combination of multiple substitutions identified at the same position is unknown. Therefore, we hypothesise that intra-host SARS-CoV-2 quasispecies with heterogeneity in the S protein facilitate competitive advantage of variants that can completely/partially evade host's natural and vaccine-induced immune responses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , África do Sul/epidemiologia , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética
5.
Viruses ; 14(8)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36016329

RESUMO

The less virulent human (h) coronaviruses (CoVs) 229E, NL63, OC43, and HKU1 cause mild, self-limiting respiratory tract infections, while the more virulent SARS-CoV-1, MERS-CoV, and SARS-CoV-2 have caused severe outbreaks. The CoV envelope (E) protein, an important contributor to the pathogenesis of severe hCoV infections, may provide insight into this disparate severity of the disease. We, therefore, generated full-length E protein models for SARS-CoV-1 and -2, MERS-CoV, HCoV-229E, and HCoV-NL63 and docked C-terminal peptides of each model to the PDZ domain of the human PALS1 protein. The PDZ-binding motif (PBM) of the SARS-CoV-1 and -2 and MERS-CoV models adopted a more flexible, extended coil, while the HCoV-229E and HCoV-NL63 models adopted a less flexible alpha helix. All the E peptides docked to PALS1 occupied the same binding site and the more virulent hCoV E peptides generally interacted more stably with PALS1 than the less virulent ones. We hypothesize that the increased flexibility of the PBM in the more virulent hCoVs facilitates more stable binding to various host proteins, thereby contributing to more severe disease. This is the first paper to model full-length 3D structures for both the more virulent and less virulent hCoV E proteins, providing novel insights for possible drug and/or vaccine development.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Virulência
6.
J Med Virol ; 94(8): 3676-3684, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35441368

RESUMO

The circulation of Omicron BA.1 led to the rapid increase in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases in South Africa in November 2021, which warranted the use of more rapid detection methods. We, therefore, assessed the ability to detect Omicron BA.1 using genotyping assays to identify specific mutations in SARS-CoV-2 positive samples, Gauteng province, South Africa. The TaqPath™ COVID-19 real-time polymerase chain reaction assay was performed on all samples selected to identify spike gene target failure (SGTF). SARS-CoV-2 genotyping assays were used for the detection of del69/70 and K417N mutation. Whole-genome sequencing was performed on a subset of genotyped samples to confirm these findings. Of the positive samples received, 11.0% (175/1589) were randomly selected to assess if SGTF and genotyping assays, that detect del69/70 and K417N mutations, could identify Omicron BA.1. We identified SGTF in 98.9% (173/175) of samples, of which 88.0% (154/175) had both the del69/70 and K417N mutation. The genotyped samples (45.7%; 80/175) that were sequenced confirmed Omicron BA.1 (97.5%; 78/80). Our data show that genotyping for the detection of the del69/70 and K417N coupled with SGTF is efficient to exclude Alpha and Beta variants and rapidly detect Omicron BA.1. However, we still require assays for the detection of unique mutations that will allow for the differentiation between other Omicron sublineages. Therefore, the use of genotyping assays to detect new dominant or emerging lineages of SARS-CoV-2 will be beneficial in limited-resource settings.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genótipo , Humanos , SARS-CoV-2/genética , África do Sul , Glicoproteína da Espícula de Coronavírus/genética
7.
AIMS Microbiol ; 7(3): 320-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708175

RESUMO

The objective of this study was to elucidate the proteomic mechanisms of drug resistance in HIV-infected African patients. Cell membrane fractions from forty oral Candida isolates isolated from African HIV-positive patients were analysed using HPLC-MS with the aim of identifying proteins associated with their pathogenicity and drug resistance. Heat shock proteins that mediate the fungicidal activity of salivary peptides were found in all tested Candida fractions, with pH-responsive proteins associated with increased pathogenicity only being present in the three most commonly isolated species. ABC multidrug transporter efflux pumps and estrogen binding proteins were only found in C. albicans fractions, while ergosterol biosynthesis proteins were identified in four species. The combination of various adherence, invasion, upregulation and efflux pump mechanisms appear to be instrumental for the Candida host colonization and drug resistance emergence in HIV-infected individuals.

8.
Viruses ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452323

RESUMO

Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs-SARS-CoV, MERS-CoV, and SARS-CoV-2-briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.


Assuntos
COVID-19/imunologia , Infecções por Coronavirus/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Animais , COVID-19/epidemiologia , COVID-19/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Citocinas/imunologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/virologia
9.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980671

RESUMO

In much of the developing world, severe malnutrition is the most prevalent cause of immunodeficiency and affects up to 50% of the population in some impoverished communities. As yet, we do not know how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will behave in populations with immunodeficiency caused by malnourishment. Interestingly, researchers are now speculating that, in some instances, a defective cellular immune system could paradoxically be a protective factor against severe disease in certain patients contracting SARS-CoV and SARS-CoV-2. This could be linked to the absence of T-cell activation. Based on available information presented here, it is plausible that the hyperimmune response, and subsequent cytokine storm often associated with severe coronavirus disease 2019 (COVID-19), could be "counteracted" by the defective immune response seen in individuals with malnutrition-induced leptin deficiency. In this paper, we proposed a theory that although those with malnutrition-linked leptin deficiency are at risk of SARS-CoV-2 infection, they are at lower risk of developing severe COVID-19.


Assuntos
COVID-19/complicações , Leptina/deficiência , Desnutrição/complicações , SARS-CoV-2 , Formação de Anticorpos , Índice de Massa Corporal , Vacinas contra COVID-19/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/prevenção & controle , Países em Desenvolvimento , Suscetibilidade a Doenças , Humanos , Imunidade Celular , Imunogenicidade da Vacina , Síndromes de Imunodeficiência/etiologia , Leptina/fisiologia , Ativação Linfocitária , Desnutrição/imunologia , Modelos Biológicos , Obesidade/complicações , Desnutrição Proteico-Calórica/complicações , Desnutrição Proteico-Calórica/imunologia , Risco , Índice de Gravidade de Doença , Linfócitos T/imunologia
10.
PLoS One ; 16(1): e0245258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33417604

RESUMO

Drug repurposing for COVID-19 has several potential benefits including shorter development time, reduced costs and regulatory support for faster time to market for treatment that can alleviate the current pandemic. The current study used molecular docking, molecular dynamics and protein-protein interaction simulations to predict drugs from the Drug Bank that can bind to the SARS-CoV-2 spike protein interacting surface on the human angiotensin-converting enzyme 2 (hACE2) receptor. The study predicted a number of peptide-based drugs, including Sar9 Met (O2)11-Substance P and BV2, that might bind sufficiently to the hACE2 receptor to modulate the protein-protein interaction required for infection by the SARS-CoV-2 virus. Such drugs could be validated in vitro or in vivo as potential inhibitors of the interaction of SARS-CoV-2 spike protein with the human angiotensin-converting enzyme 2 (hACE2) in the airway. Exploration of the proposed and current pharmacological indications of the peptide drugs predicted as potential inhibitors of the interaction between the spike protein and hACE2 receptor revealed that some of the predicted peptide drugs have been investigated for the treatment of acute respiratory distress syndrome (ARDS), viral infection, inflammation and angioedema, and to stimulate the immune system, and potentiate antiviral agents against influenza virus. Furthermore, these predicted drug hits may be used as a basis to design new peptide or peptidomimetic drugs with better affinity and specificity for the hACE2 receptor that may prevent interaction between SARS-CoV-2 spike protein and hACE2 that is prerequisite to the infection by the SARS-CoV-2 virus.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
11.
AIDS Res Hum Retroviruses ; 37(8): 601-609, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32993321

RESUMO

Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 is responsible for a new coronavirus disease known as coronavirus disease-19 (COVID-19). SARS-CoV-2 reports neurotropic properties and may have neurological implications, and this creates another health burden for people living with HIV. As yet, the impact of COVID-19 on (neuro)inflammation and the development of HIV-associated neurocognitive disorders (HAND) is not fully known. Here, we reviewed preliminary evidence that provides clues that COVID-19 may exacerbate inflammatory mechanisms related to the development of HAND.


Assuntos
Nefropatia Associada a AIDS/complicações , COVID-19/complicações , Inflamação/complicações , Transtornos Neurocognitivos/complicações , Nefropatia Associada a AIDS/virologia , COVID-19/virologia , Humanos , Inflamação/virologia , Transtornos Neurocognitivos/virologia , SARS-CoV-2/patogenicidade
12.
Molecules ; 25(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255253

RESUMO

Alkaloids are a class of natural products known to have wide pharmacological activity and have great potential for the development of new drugs to treat a wide array of pathologies. Some alkaloids have antiviral activity and/or have been used as prototypes in the development of synthetic antiviral drugs. In this study, eleven anti-coronavirus alkaloids were identified from the scientific literature and their potential therapeutic value against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is discussed. In this study, in silico studies showed an affinity of the alkaloids for binding to the receptor-binding domain of the SARS-CoV-2 spike protein, putatively preventing it from binding to the host cell. Lastly, several mechanisms for the known anti-coronavirus activity of alkaloids were discussed, showing that the alkaloids are interesting compounds with potential use as bioactive agents against SARS-CoV-2.


Assuntos
Alcaloides/química , Antivirais/química , Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Alcaloides/uso terapêutico , Antivirais/uso terapêutico , COVID-19/virologia , Humanos , Pandemias , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química
13.
Front Microbiol ; 11: 2086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013759

RESUMO

Since the severe acute respiratory syndrome (SARS) outbreak in 2003, human coronaviruses (hCoVs) have been identified as causative agents of severe acute respiratory tract infections. Two more hCoV outbreaks have since occurred, the most recent being SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The clinical presentation of SARS and MERS is remarkably similar to COVID-19, with hyperinflammation causing a severe form of the disease in some patients. Previous studies show that the expression of the SARS-CoV E protein is associated with the hyperinflammatory response that could culminate in acute respiratory distress syndrome (ARDS), a potentially fatal complication. This immune-mediated damage is largely caused by a cytokine storm, which is induced by significantly elevated levels of inflammatory cytokines interleukin (IL)-1ß and IL-6, which are partly mediated by the expression of the SARS-CoV E protein. The interaction between the SARS-CoV E protein and the host protein, syntenin, as well as the viroporin function of SARS-CoV E, are linked to this cytokine dysregulation. This review aims to compare the clinical presentation of virulent hCoVs with a specific focus on the cause of the immunopathology. The review also proposes that inhibition of IL-1ß and IL-6 in severe cases can improve patient outcome.

14.
Oxid Med Cell Longev ; 2020: 3173281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855764

RESUMO

The outbreaks of viruses with wide spread and mortality in the world population have motivated the research for new therapeutic approaches. There are several viruses that cause a biochemical imbalance in the infected cell resulting in oxidative stress. These effects may be associated with the development of pathologies and worsening of symptoms. Therefore, this review is aimed at discussing natural compounds with both antioxidant and antiviral activities, specifically against coronavirus infection, in an attempt to contribute to global researches for discovering effective therapeutic agents in the treatment of coronavirus infection and its severe clinical complications. The contribution of the possible action of these compounds on metabolic modulation associated with antiviral properties, in addition to other mechanisms of action, is presented.


Assuntos
Antioxidantes/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Animais , Antioxidantes/uso terapêutico , Coronavirus/patogenicidade , Infecções por Coronavirus/virologia , Humanos
15.
Viruses ; 12(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858801

RESUMO

Seven human coronaviruses (hCoVs) are known to infect humans. The most recent one, SARS-CoV-2, was isolated and identified in January 2020 from a patient presenting with severe respiratory illness in Wuhan, China. Even though viral coinfections have the potential to influence the resultant disease pattern in the host, very few studies have looked at the disease outcomes in patients infected with both HIV and hCoVs. Groups are now reporting that even though HIV-positive patients can be infected with hCoVs, the likelihood of developing severe CoV-related diseases in these patients is often similar to what is seen in the general population. This review aimed to summarize the current knowledge of coinfections reported for HIV and hCoVs. Moreover, based on the available data, this review aimed to theorize why HIV-positive patients do not frequently develop severe CoV-related diseases.


Assuntos
Coinfecção/virologia , Infecções por Coronavirus/virologia , Infecções por HIV/virologia , Pneumonia Viral/virologia , Betacoronavirus/isolamento & purificação , COVID-19 , Coinfecção/epidemiologia , Coinfecção/imunologia , Coinfecção/terapia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Infecções por HIV/terapia , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2 , Resultado do Tratamento
16.
Virol J ; 16(1): 69, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133031

RESUMO

BACKGROUND: Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. MAIN BODY: This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. CONCLUSIONS: The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs.


Assuntos
Coronavirus/química , Proteínas do Envelope Viral/química , Animais , Coronavirus/genética , Coronavirus/patogenicidade , Infecções por Coronavirus/virologia , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Síndrome Respiratória Aguda Grave/virologia , Proteínas do Envelope Viral/genética , Zoonoses/transmissão , Zoonoses/virologia
17.
Toxicol Rep ; 5: 813-818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128298

RESUMO

BACKGROUND: Medicinal plants are used by a large proportion of the global population as complementary and alternative medicines. However, little is known about their toxicity. G. africana has been used to treat wounds, coughs and skin diseases and is used in cosmetic formulations such as lotions and shampoos. METHODS: The acute oral and dermal toxicity potential of G. africana was analyzed after a single administration of 300 and 2000 mg/kgbw for acute oral toxicity and 2000 mg/kgbw for acute dermal toxicity. Female Sprague-Dawley rats were used for the acute oral toxicity study whereas both male and female Sprague-Dawley rats were used for the acute dermal toxicity study. In the Episkin skin irritation test, the irritation potential of G. africana (concentrate) and G. africana (in-use dilution) extracts were assessed using the Episkin reconstituted human epidermis. In the dermal sensitization study, female CBA/Ca mice were treated with G. africana concentrations of 50, 100 and 200 mg/ml respectively. The vehicle of choice was dimethylformamide which acted as a control. RESULTS: The results of the acute oral and dermal toxicity studies revealed that the median lethal dosage (LD50) for G. africana extract in Sprague-Dawley rats was considered to exceed 2000 mg/kgbw. In the irritation test, the G. africana (concentrate) and G. africana (in-use dilution) extracts were non-irritant on the Episkin reconstituted human epidermis. In the dermal sensitization study, the stimulation index (SI) values for the mice treated with the G. africana extract at concentrations of 50, 100 and 200 mg/ml/kgbw, when compared to the control group, were 1.3, 0.9 and 1.3 respectively. The open application of the extract at the various concentrations did not result in a SI of ≥ 3 in any group. Hence, it did not elicit a hypersensitivity response. CONCLUSION: These findings demonstrate that the acute toxicity profile for G. africana is acceptable and can subsequently be used for single use in the pharmaceutical and cosmetic industries.

18.
Viruses ; 10(2)2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495250

RESUMO

Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012, a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure; (ii) clinical features; (iii) diagnosis of infection; and (iv) treatment and vaccine development.


Assuntos
Infecções por Coronavirus/diagnóstico , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Infecções Respiratórias/diagnóstico , Animais , Antivirais/uso terapêutico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Modelos Animais de Doenças , Genoma Viral , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Infecções Respiratórias/virologia , Vacinas/isolamento & purificação , Proteínas Virais
19.
Front Vet Sci ; 4: 73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620610

RESUMO

Although diverse tick-borne pathogens (TBPs) are endemic to East Africa, with recognized impact on human and livestock health, their diversity and specific interactions with tick and vertebrate host species remain poorly understood in the region. In particular, the role of reptiles in TBP epidemiology remains unknown, despite having been implicated with TBPs of livestock among exported tortoises and lizards. Understanding TBP ecologies, and the potential role of common reptiles, is critical for the development of targeted transmission control strategies for these neglected tropical disease agents. During the wet months (April-May; October-December) of 2012-2013, we surveyed TBP diversity among 4,126 ticks parasitizing livestock and reptiles at homesteads along the shores and islands of Lake Baringo and Lake Victoria in Kenya, regions endemic to diverse neglected tick-borne diseases. After morphological identification of 13 distinct Rhipicephalus, Amblyomma, and Hyalomma tick species, ticks were pooled (≤8 individuals) by species, host, sampling site, and collection date into 585 tick pools. By supplementing previously established molecular assays for TBP detection with high-resolution melting analysis of PCR products before sequencing, we identified high frequencies of potential disease agents of ehrlichiosis (12.48% Ehrlichia ruminantium, 9.06% Ehrlichia canis), anaplasmosis (6.32% Anaplasma ovis, 14.36% Anaplasma platys, and 3.08% Anaplasma bovis,), and rickettsiosis (6.15% Rickettsia africae, 2.22% Rickettsia aeschlimannii, 4.27% Rickettsia rhipicephali, and 4.95% Rickettsia spp.), as well as Paracoccus sp. and apicomplexan hemoparasites (0.51% Theileria sp., 2.56% Hepatozoon fitzsimonsi, and 1.37% Babesia caballi) among tick pools. Notably, we identified E. ruminantium in both Amblyomma and Rhipicephalus pools of ticks sampled from livestock in both study areas as well as in Amblyomma falsomarmoreum (66.7%) and Amblyomma nuttalli (100%) sampled from tortoises and Amblyomma sparsum (63.6%) sampled in both cattle and tortoises at Lake Baringo. Similarly, we identified E. canis in rhipicephaline ticks sampled from livestock and dogs in both regions and Amblyomma latum (75%) sampled from monitor lizards at Lake Victoria. These novel tick-host-pathogen interactions have implications on the risk of disease transmission to humans and domestic animals and highlight the complexity of TBP ecologies, which may include reptiles as reservoir species, in sub-Saharan Africa.

20.
Viruses ; 7(12): 6642-60, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694449

RESUMO

Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CL(pro) provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally.


Assuntos
Antivirais/isolamento & purificação , Coronavirus/efeitos dos fármacos , Inibidores de Cisteína Proteinase/isolamento & purificação , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...