Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 49(3): 141-150, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087756

RESUMO

Muscle fiber cross-sectional area (CSA) and proportion of different fiber types are important determinants of muscle function and overall metabolism. Genetic variation plays a substantial role in phenotypic variation of these traits; however, the underlying genes remain poorly understood. This study aimed to map quantitative trait loci (QTL) affecting differences in soleus muscle fiber traits between the LG/J and SM/J mouse strains. Fiber number, CSA, and proportion of oxidative type I fibers were assessed in the soleus of 334 genotyped female and male mice of the F34 generation of advanced intercross lines (AIL) derived from the LG/J and SM/J strains. To increase the QTL detection power, these data were combined with 94 soleus samples from the F2 intercross of the same strains. Transcriptome of the soleus muscle of LG/J and SM/J females was analyzed by microarray. Genome-wide association analysis mapped four QTL (genome-wide P < 0.05) affecting the properties of muscle fibers to chromosome 2, 3, 4, and 11. A 1.5-LOD QTL support interval ranged between 2.36 and 4.67 Mb. On the basis of the genomic sequence information and functional and transcriptome data, we identified candidate genes for each of these QTL. The combination of analyses in F2 and F34 AIL populations with transcriptome and genomic sequence data in the parental strains is an effective strategy for refining QTL and nomination of the candidate genes.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mapeamento Físico do Cromossomo , Animais , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Genômica , Masculino , Camundongos , Fenótipo , Locos de Características Quantitativas/genética , Caracteres Sexuais
2.
J Pept Res ; 65(2): 272-83, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15705169

RESUMO

The synthesis of 5-hydroxylysine (Hyl) derivatives for incorporation by solid-phase methodologies presents numerous challenges. Hyl readily undergoes intramolecular lactone formation, and protected intermediates often have poor solubilities. The goals of this work were twofold: first, develop a convenient method for the synthesis of O-protected Fmoc-Hyl; secondly, evaluate the efficiency of methods for the synthesis of O-glycosylated Fmoc-Hyl. The 5-O-tert-butyldimethylsilyl (TBDMS) fluoren-9-ylmethoxycarbonyl-Hyl (Fmoc-Hyl) derivative was conveniently prepared by the addition of tert-butyldimethylsilyl trifluoromethanesulfonate to copper-complexed Hyl[epsilon-tert-butyloxycarbonyl (Boc)]. The complex was decomposed with Na+ Chelex resin and the Fmoc group added to the alpha-amino group. Fmoc-Hyl(epsilon-Boc, O-TBDMS) was obtained in 67% overall yield and successfully used for the solid-phase syntheses of 3 Hyl-containing peptides. The preparation of Fmoc-Hyl[epsilon-Boc, O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)] was compared for the thioglycoside, trichloroacetimidate and Koenigs-Knorr methods. The most efficient approach was found to be Koenigs-Knorr under inverse conditions, where Fmoc-Hyl(epsilon-Boc)-OBzl and peracetylated galactosyl bromide were added to silver trifluoromethanesulfonate in 1,2-dichloroethane, resulting in a 45% isolated yield. Side-reactions that occurred during previously described preparations of glycosylated Hyl derivatives, such as lactone formation, loss of side-chain protecting groups, orthoester formation, or production of anomeric mixtures, were avoided here. Research on the enzymology of Lys hydroxylation and subsequent glycosylation, as well as the role of glycosylated Hyl in receptor recognition, will be greatly aided by the convenient and efficient synthetic methods developed here.


Assuntos
Fluorenos/síntese química , Hidroxilisina/análogos & derivados , Lisina/análogos & derivados , Lisina/síntese química , Bioquímica/métodos
3.
Proc Natl Acad Sci U S A ; 100(9): 5413-8, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12686696

RESUMO

Synthetic hydrogels have been molecularly engineered to mimic the invasive characteristics of native provisional extracellular matrices: a combination of integrin-binding sites and substrates for matrix metalloproteinases (MMP) was required to render the networks degradable and invasive by cells via cell-secreted MMPs. Degradation of gels was engineered starting from a characterization of the degradation kinetics (k(cat) and K(m)) of synthetic MMP substrates in the soluble form and after crosslinking into a 3D hydrogel network. Primary human fibroblasts were demonstrated to proteolytically invade these networks, a process that depended on MMP substrate activity, adhesion ligand concentration, and network crosslinking density. Gels used to deliver recombinant human bone morphogenetic protein-2 to the site of critical defects in rat cranium were completely infiltrated by cells and remodeled into bony tissue within 4 wk at a dose of 5 microg per defect. Bone regeneration was also shown to depend on the proteolytic sensitivity of the matrices. These hydrogels may be useful in tissue engineering and cell biology as alternatives for naturally occurring extracellular matrix-derived materials such as fibrin or collagen.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato , Metaloproteinases da Matriz/metabolismo , Engenharia Tecidual , Animais , Células Cultivadas , Consolidação da Fratura , Humanos , Cinética , Ratos , Ratos Sprague-Dawley , Crânio/fisiologia
4.
Cell Death Differ ; 9(9): 956-62, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12181746

RESUMO

Deoxyribonuclease IIalpha (DNase IIalpha) is one of many endonucleases implicated in DNA digestion during apoptosis. We produced mice with targeted disruption of DNase IIalpha and defined its role in apoptosis. Mice deleted for DNase IIalpha die at birth with many tissues exhibiting large DNA-containing bodies that result from engulfed but undigested cell corpses. These DNA-containing bodies are pronounced in the liver where fetal definitive erythropoiesis occurs and extruded nuclei are degraded. They are found between the digits, where apoptosis occurs, and in many other regions of the embryo. Defects in the diaphragm appear to cause death of the mice due to asphyxiation. The DNA in these bodies contains 3'-hydroxyl ends and therefore stain positive in the TUNEL assay. In addition, numerous unengulfed TUNEL-positive cells are observed throughout the embryo. Apoptotic cells are normally cleared rapidly from a tissue; hence the persistence of the DNA-containing bodies and TUNEL-positive cells identifies sites where apoptosis occurs during development. These results demonstrate that DNase IIalpha is not required for the generation of the characteristic DNA fragmentation that occurs during apoptosis but is required for degrading DNA of dying cells and this function is necessary for proper fetal development.


Assuntos
Animais Recém-Nascidos/metabolismo , Apoptose/genética , DNA/metabolismo , Embrião de Mamíferos/enzimologia , Endodesoxirribonucleases/deficiência , Fagocitose/genética , Animais , Animais Recém-Nascidos/anormalidades , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Células Cultivadas , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/citologia , Endodesoxirribonucleases/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Enzimológica da Expressão Gênica/genética , Corpos de Inclusão/enzimologia , Corpos de Inclusão/patologia , Masculino , Camundongos , Camundongos Knockout
5.
Biochemistry ; 40(19): 5795-803, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11341845

RESUMO

Matrix metalloproteinase (MMP) family members are involved in the physiological remodeling of tissues and embryonic development as well as pathological destruction of extracellular matrix components. To study the mechanisms of MMP action on collagenous substrates, we have constructed homotrimeric, fluorogenic triple-helical peptide (THP) models of the MMP-1 cleavage site in type II collagen. The substrates were designed to incorporate the fluorophore/quencher pair of (7-methoxycoumarin-4-yl)acetyl (Mca) and N-2,4-dinitrophenyl (Dnp) in the P(5) and P(5)' positions, respectively. In addition, Arg was incorporated in the P(2)' and P(8)' positions to enhance enzyme activity and improve substrate solubility. The desired sequences were Gly-Pro-Lys(Mca)-Gly-Pro-Gln-Gly approximately Leu-Arg-Gly-Gln-Lys(Dnp)-Gly-Ile/Val-Arg. Two fluorogenic substrates were prepared, one using a covalent branching protocol (fTHP-1) and one using a peptide self-assembly approach (fTHP-3). An analogous single-stranded substrate (fSSP-3) was also synthesized. Both THPs were hydrolyzed by MMP-1 at the Gly approximately Leu bond, analogous to the bond cleaved in the native collagen. The individual kinetic parameters for MMP-1 hydrolysis of fTHP-3 were k(cat) = 0.080 s(-1) and K(M) = 61.2 microM. Subsequent investigations showed fTHP-3 hydrolysis by MMP-2, MMP-3, MMP-13, a C-terminal domain-deleted MMP-1 [MMP-1(Delta(243-450))], and a C-terminal domain-deleted MMP-3 [MMP-3(Delta(248-460))]. The order of k(cat)/K(M) values was MMP-13 > MMP-1 approximately MMP-1(Delta(243-450)) approximately MMP-2 >> MMP-3 approximately MMP-3(Delta(248-460)). Studies on the effect of temperature on fTHP-3 and fSSP-3 hydrolysis by MMP-1 showed that the activation energies between these two substrates differed by 3.4-fold, similar to the difference in activation energies for MMP-1 hydrolysis of type I collagen and gelatin. This indicates that fluorogenic triple-helical substrates mimic the behavior of the native collagen substrate and may be useful for the investigation of collagenase triple-helical activity.


Assuntos
Corantes Fluorescentes/metabolismo , Metaloproteinases da Matriz/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Colágeno/metabolismo , Colagenases/metabolismo , Humanos , Hidrólise , Cinética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Estrutura Secundária de Proteína , Coelhos , Especificidade por Substrato , Termodinâmica
6.
J Chromatogr A ; 890(1): 117-25, 2000 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-10976799

RESUMO

The matrix metalloproteinase (MMP) family has been implicated in the process of a variety of diseases such as arthritis, atherosclerosis, and tumor cell metastasis. We have been designing single-stranded peptides (SSPs) and triple-helical peptides (THPs) as potential discriminatory MMP substrates. Edman degradation sequence and matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analyses of proteolytic activity have been utilized to aid in further substrate design. THP models of the alpha1(I)772-786 sequence from type I collagen were synthesized to examine the triple-helical substrate specificity of MMP family members. Sequence and MALDI-MS analyses were used in conjunction with a fluorometric assay to determine the exact point of cleavage by each MMP. MMP-1 (interstitial collagenase) cleaved the substrates at a single Gly-Ile bond, analogous to the cleavage site in type I collagen. MMP-2 (Mr 72 000 type IV collagenase; gelatinase A) was found to cleave the substrates at two sites, a Gly-Ile bond and a Gly-Gln bond. MMP-3 (stromelysin 1) was found to cleave only one of the substrates after reaction for 48 h. Ultimately, sequence and MALDI-MS analyses allowed us to detect an additional cleavage site for MMP-2 in comparison to MMP-1, while MMP-3 was found to cleave a substrate after an extended time period. The second cleavage site would cause the kinetic parameters for MMP-2 to be overestimated by the fluorometric assay. Further design variations for these substrates need to consider the presence of more stable triple-helical conformation (to eliminate MMP-3 binding) and the removal of Gly-Gln bonds that may be susceptible to MMP-2.


Assuntos
Metaloproteinases da Matriz/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Dicroísmo Circular , Dados de Sequência Molecular , Compostos Organofosforados/química , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Análise de Sequência de Proteína/métodos , Especificidade por Substrato
7.
Biopolymers ; 54(7): 531-46, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10984405

RESUMO

Numerous approaches have been described for creating relatively small folded biomolecular structures. "Peptide-amphiphiles," whereby monoalkyl or dialkyl hydrocarbon chains are covalently linked to peptide sequences, have been shown previously to form specific molecular architecture of enhanced stability. The present study has examined the use of monoalkyl hydrocarbon chains as a more general method for inducing protein-like structures. Peptide and peptide-amphiphiles have been characterized by CD and one- and two-dimensional nmr spectroscopic techniques. We have examined two structural elements: alpha-helices and collagen-like triple helices. The alpha-helical propensity of a 16-residue peptide either unmodified or acylated with a C(6) or C(16) monoalkyl hydrocarbon chain has been examined initially. The 16-residue peptide alone does not form a distinct structure in solution, whereas the 16-residue peptide adopts predominantly an alpha-helical structure in solution when a C(6) or C(16) monoalkyl hydrocarbon chain is N-terminally acylated. The thermal stability of the alpha-helix is greater upon addition of the C(16) compared with the C(6) chain, which correlates to the extent of aggregation induced by the respective hydrocarbon chains. Very similar results are seen using a 39-residue triple-helical model peptide, in that structural thermal stability (a) is increasingly enhanced as alkyl chain length is increased and (b) correlates to the extent of peptide-amphiphile aggregation. Overall, structures as diverse as alpha-helices, triple helices, and turns/loops have been shown to be induced and/or stabilized by alkyl chains. Increasing alkyl chain length enhances stability of the structural element and induces aggregates of defined sizes. Hydrocarbon chains may be useful as general tools for protein-like structure initiation and stabilization as well as biomaterial modification.


Assuntos
Ácidos Graxos/química , Peptídeos/química , Dicroísmo Circular , Dimerização , Ácidos Graxos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/síntese química , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
J Biol Chem ; 275(18): 13282-90, 2000 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-10788434

RESUMO

The matrix metalloproteinase (MMP) family has been implicated in the process of a variety of diseases such as arthritis, atherosclerosis, and tumor cell metastasis. To study the mechanisms of MMP action on collagenous substrates, we have constructed homotrimeric triple-helical peptide (THP) models of the collagenase cleavage sites in types I and II collagen. The THPs incorporate either the alpha1(I)772-786 or the alpha1(II)772-783 sequence. The alpha1(I)772-786 and alpha1(II)772-783 THPs were hydrolyzed by MMP-1 at the Gly-Ile and Gly-Leu bonds, respectively, analogous to the bonds cleaved in corresponding native collagens. Thus, the THPs contained all necessary information to direct MMP-1 binding and proteolysis. Subsequent investigations using the alpha1(I)772-786 THP showed hydrolysis by MMP-2, MMP-13, and a COOH-terminal domain-deleted MMP-1 (MMP-1(Delta(243-450))) but not by MMP-3 or a COOH-terminal domain-deleted MMP-3 (MMP-3(Delta(248-460))). Kinetic analyses showed a k(cat)/K(m) value of 1,808 s(-1) m(-1) for MMP-1 hydrolysis of alpha1(I)772-786 THP, approximately 10-fold lower than for type I collagen. The effect is caused primarily by relative K(m) values. MMP-2 and MMP-13 cleaved the THP more rapidly than MMP-1, but MMP-2 cleavage occurred at distinct multiple sites. Comparison of MMP-1 and MMP-1(Delta(243-450)) hydrolysis of alpha1(I)772-786 THP showed that both can cleave a triple-helical substrate with a slightly higher K(m) value for MMP-1(Delta(243-450)). We propose that the COOH-terminal domain of MMPs is necessary for orienting whole, native collagen molecules but may not be necessary for binding to and cleaving a THP. This proposal is consistent with the large distance between the MMP-1 catalytic and COOH-terminal domains observed by three-dimensional structural analysis and supports previous suggestions that the features of the catalytic domain contribute significantly toward enzyme specificity.


Assuntos
Colágeno/química , Metaloproteinases da Matriz/química , Modelos Moleculares , Sequência de Aminoácidos , Animais , Hidrólise , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...