Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1440045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211046

RESUMO

Autoimmune diabetes is a disease characterized by the selective destruction of insulin-secreting ß-cells of the endocrine pancreas by islet-reactive T cells. Autoimmune disease requires a complex interplay between host genetic factors and environmental triggers that promote the activation of such antigen-specific T lymphocyte responses. Given the critical involvement of self-reactive T lymphocyte in diabetes pathogenesis, understanding how these T lymphocyte populations contribute to disease is essential to develop targeted therapeutics. To this end, several key antigenic T lymphocyte epitopes have been identified and studied to understand their contributions to disease with the aim of developing effective treatment approaches for translation to the clinical setting. In this review, we discuss the role of pathogenic islet-specific T lymphocyte responses in autoimmune diabetes, the mechanisms and cell types governing autoantigen presentation, and therapeutic strategies targeting such T lymphocyte responses for the amelioration of disease.


Assuntos
Autoantígenos , Diabetes Mellitus Tipo 1 , Linfócitos T , Humanos , Diabetes Mellitus Tipo 1/imunologia , Autoantígenos/imunologia , Animais , Linfócitos T/imunologia , Epitopos de Linfócito T/imunologia , Células Secretoras de Insulina/imunologia , Autoimunidade , Ativação Linfocitária/imunologia , Apresentação de Antígeno/imunologia
2.
Immunity ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39214091

RESUMO

T cell-mediated islet destruction is a hallmark of autoimmune diabetes. Here, we examined the dynamics and pathogenicity of CD4+ T cell responses to four different insulin-derived epitopes during diabetes initiation in non-obese diabetic (NOD) mice. Single-cell RNA sequencing of tetramer-sorted CD4+ T cells from the pancreas revealed that islet-antigen-specific T cells adopted a wide variety of fates and required XCR1+ dendritic cells for their activation. Hybrid-insulin C-chromogranin A (InsC-ChgA)-specific CD4+ T cells skewed toward a distinct T helper type 1 (Th1) effector phenotype, whereas the majority of insulin B chain and hybrid-insulin C-islet amyloid polypeptide-specific CD4+ T cells exhibited a regulatory phenotype and early or weak Th1 phenotype, respectively. InsC-ChgA-specific CD4+ T cells were uniquely pathogenic upon transfer, and an anti-InsC-ChgA:IAg7 antibody prevented spontaneous diabetes. Our findings highlight the heterogeneity of T cell responses to insulin-derived epitopes in diabetes and argue for the feasibility of antigen-specific therapies that blunts the response of pathogenic CD4+ T cells causing autoimmunity.

3.
Proc Natl Acad Sci U S A ; 121(31): e2320303121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39008691

RESUMO

Influenza viruses pose a significant burden on global human health. Influenza has a broad cellular tropism in the airway, but how infection of different epithelial cell types impacts replication kinetics and burden in the airways is not fully understood. Using primary human airway cultures, which recapitulate the diverse epithelial cell landscape of the human airways, we investigated the impact of cell type composition on virus tropism and replication kinetics. Cultures were highly diverse across multiple donors and 30 independent differentiation conditions and supported a range of influenza replication. Although many cell types were susceptible to influenza, ciliated and secretory cells were predominantly infected. Despite the strong tropism preference for secretory and ciliated cells, which consistently make up 75% or more of infected cells, only ciliated cells were associated with increased virus production. Surprisingly, infected secretory cells were associated with overall reduced virus output. The disparate response and contribution to influenza virus production could be due to different pro- and antiviral interferon-stimulated gene signatures between ciliated and secretory populations, which were interrogated with single-cell RNA sequencing. These data highlight the heterogeneous outcomes of influenza virus infections in the complex cellular environment of the human airway and the disparate impacts of infected cell identity on multiround burst size, even among preferentially infected cell types.


Assuntos
Células Epiteliais , Influenza Humana , Tropismo Viral , Replicação Viral , Humanos , Influenza Humana/virologia , Replicação Viral/fisiologia , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Cílios/virologia , Cílios/metabolismo , Células Cultivadas , Mucosa Respiratória/virologia , Mucosa Respiratória/citologia
4.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645184

RESUMO

Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2+ islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2+ islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation.

5.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561596

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for preventing or treating type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B chain 10-23 peptide presented in the context of the IAg7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR redirected NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Cotransfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In WT NOD mice, InsB-g7 CAR Tregs prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising therapeutic approach for the prevention of autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Receptores de Antígenos Quiméricos , Camundongos , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevenção & controle , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos Endogâmicos NOD , Insulina/metabolismo , Linfócitos T Reguladores
6.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865264

RESUMO

Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary: Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.

7.
Pancreas ; 51(6): 580-585, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206462

RESUMO

ABSTRACT: The association between acute pancreatitis (AP) and diabetes mellitus (DM) has long been established, with the initial descriptions of AP patients presenting with DM after a bout of AP published in the 1940s and 50s. However, the potential mechanisms involved, particularly those components related to the immune system, have not been well defined. The Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) study is a multicenter clinical study designed to understand the frequency and phenotype of DM developing after AP. This article describes one objective of the DREAM study: to determine the immunologic mechanisms of DM after AP, including the contribution of ß-cell autoimmunity. This component of the study will assess the presence of islet autoimmunity, as well as the magnitude and kinetics of the innate and adaptive immune response at enrollment and during longitudinal follow-up after 1 or more episodes of AP. Finally, DREAM will evaluate the relationship between immune features, DM development, and pancreatitis etiology and severity.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Pancreatite , Doença Aguda , Diabetes Mellitus Tipo 1/complicações , Humanos , Pancreatite/complicações
8.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393950

RESUMO

We investigate how myeloid subsets differentially shape immunity to pancreatic ductal adenocarcinoma (PDA). We show that tumor antigenicity sculpts myeloid cell composition and functionality. Antigenicity promotes accumulation of type 1 dendritic cells (cDC1), which is driven by Xcr1 signaling, and overcomes macrophage-mediated suppression. The therapeutic activity of adoptive T cell therapy or programmed cell death ligand 1 blockade required cDC1s, which sustained splenic Klrg1+ cytotoxic antitumor T cells and functional intratumoral T cells. KLRG1 and cDC1 genes correlated in human tumors, and PDA patients with high intratumoral KLRG1 survived longer than patients with low intratumoral KLRG1. The immunotherapy CD40 agonist also required host cDC1s for maximal therapeutic benefit. However, CD40 agonist exhibited partial therapeutic benefit in cDC1-deficient hosts and resulted in priming of tumor-specific yet atypical CD8+ T cells with a regulatory phenotype and that failed to participate in tumor control. Monocyte/macrophage depletion using clodronate liposomes abrogated T cell priming yet enhanced the antitumor activity of CD40 agonist in cDC1-deficient hosts via engagement of innate immunity. In sum, our study supports that cDC1s are essential for sustaining effective antitumor T cells and supports differential roles for cDC1s and monocytes/macrophages in instructing T cell fate and immunotherapy response.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Células Dendríticas , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas
9.
Sci Rep ; 11(1): 17142, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433860

RESUMO

The notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with standard approaches. Optical microscopy is an important and widely used method to evaluate immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, attempts at quantitative measurements require significant time for manual analysis and often involve sophisticated and expensive imaging software. In this study, we developed and illustrate here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing ß cell and glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our image analysis procedure allows for direct quantification and statistical determination of islet area and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be combined with other markers of inflammation or activation in future studies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/patologia , Processamento de Imagem Assistida por Computador/métodos , Ilhotas Pancreáticas/patologia , Animais , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular , Diabetes Mellitus Tipo 1/imunologia , Feminino , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Microscopia de Fluorescência/métodos
10.
Curr Diab Rep ; 21(6): 20, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956235

RESUMO

PURPOSE OF REVIEW: Programmed death-1 (PD-1) is an inhibitory receptor that controls T and B cell proliferation and function through interacting with its ligand PD-L1 or PD-L2. PD-1/PD-L1 blockade reboots anti-tumor immunity and is currently used to treat > 15 different types of cancer. However, the response rate is not at 100% and some patients relapse. Importantly, up to 37% of patients treated with PD-1/PD-L1 blocking antibodies develop immune-related adverse events, including overt autoimmunity, such as type 1 diabetes (T1D). Herein, we discuss the role of PD-1, PD-L1, and PD-L2 signaling in pre-clinical models of T1D, including recent work from our laboratory. RECENT FINDINGS: We highlight ongoing efforts to harness PD-1/PD-L1 signaling and treat autoimmunity. We also evaluate studies aimed at defining biomarkers that could reliably predict the development of immune-related adverse events after clinical PD-1/PD-L1 blockade. With increasing use of PD-1 blockade in the clinic, onset of autoimmunity is a growing health concern. In this review, we discuss what is known about the role of PD-1 pathway signaling in T1D and comment on ongoing efforts to identify patients at risk of T1D development after PD-1 pathway blockade.


Assuntos
Diabetes Mellitus Tipo 1 , Neoplasias , Autoimunidade , Humanos , Ativação Linfocitária , Transdução de Sinais
11.
PLoS One ; 15(10): e0241218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33104726

RESUMO

Occupational exposure to toxic chemicals increases the risk of developing localized provoked vulvodynia-a prevalent, yet poorly understood, chronic condition characterized by sensitivity to touch and pressure, and accumulation of mast cells in painful tissues. Here, we topically sensitized female ND4 Swiss mice to the common household and industrial preservative methylisothiazolinone (MI) and subsequently challenged them daily with MI or acetone and olive oil vehicle on the labiar skin. MI-challenged mice developed significant, persistent tactile sensitivity and long-lasting local accumulation of mast cells alongside early, transient increases in CD4+ and CD8+ T cells, eosinophils, neutrophils, and increases in pro-inflammatory cytokines. Therapeutic administration of imatinib, a c-Kit inhibitor known to inhibit mast cell survival, led to reduced mast cell accumulation and alleviated tactile genital pain. We provide the first pre-clinical evidence of dermal MI-induced mast-cell dependent pain and lay the groundwork for detailed understanding of these intersections between MI-driven immunomodulation and chronic pain.


Assuntos
Dor Crônica/etiologia , Dermatite de Contato/etiologia , Desinfetantes/toxicidade , Inflamação/etiologia , Tiazóis/toxicidade , Animais , Feminino , Inflamação/imunologia , Mastócitos/imunologia , Camundongos , Pele/efeitos dos fármacos , Pele/patologia
12.
Nat Immunol ; 21(10): 1194-1204, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895539

RESUMO

Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.


Assuntos
Aorta/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Placa Aterosclerótica/imunologia , Túnica Íntima/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Colesterol/metabolismo , Progressão da Doença , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parabiose , Fagocitose
13.
J Immunol ; 205(5): 1449-1460, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32737148

RESUMO

Optimal ex vivo expansion protocols of tumor-specific T cells followed by adoptive cell therapy must yield T cells able to home to tumors and effectively kill them. Our previous study demonstrated ex vivo activation in the presence of IL-12-induced optimal CD8+ T cell expansion and melanoma regression; however, adverse side effects, including autoimmunity, can occur. This may be due to transfer of high-avidity self-specific T cells. In this study, we compared mouse low- and high-avidity T cells targeting the tumor Ag tyrosinase-related protein 2 (TRP2). Not surprisingly, high-avidity T cells provide superior tumor control, yet low-avidity T cells can promote tumor regression. The addition of IL-12 during in vitro expansion boosts low-avidity T cell responsiveness, tumor regression, and prevents T cell exhaustion. In this study, we demonstrate that IL-12-primed T cells are resistant to PD-1/PD-L1-mediated suppression and retain effector function. Importantly, IL-12 preconditioning prevented exhaustion as LAG-3, PD-1, and TOX were decreased while simultaneously increasing KLRG1. Using intravital imaging, we also determined that high-avidity T cells have sustained contacts with intratumoral dendritic cells and tumor targets compared with low-avidity T cells. However, with Ag overexpression, this defect is overcome, and low-avidity T cells control tumor growth. Taken together, these data illustrate that low-avidity T cells can be therapeutically beneficial if cocultured with IL-12 cytokine during in vitro expansion and highly effective in vivo if Ag is not limiting. Clinically, low-avidity T cells provide a safer alternative to high-avidity, TCR-engineered T cells, as IL-12-primed, low-avidity T cells cause less autoimmune vitiligo.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-12/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Animais , Antígenos de Neoplasias/imunologia , Autoimunidade/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
14.
PLoS One ; 15(7): e0235518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614928

RESUMO

Interruption of the programmed death 1 (PD-1) / programmed death ligand 1 (PD-L1) pathway is an established and effective therapeutic strategy in human oncology and holds promise for veterinary oncology. We report the generation and characterization of monoclonal antibodies specific for canine PD-1 and PD-L1. Antibodies were initially assessed for their capacity to block the binding of recombinant canine PD-1 to recombinant canine PD-L1 and then ranked based on efficiency of binding as judged by flow cytometry. Selected antibodies were capable of detecting PD-1 and PD-L1 on canine tissues by flow cytometry and Western blot. Anti-PD-L1 worked for immunocytochemistry and anti-PD-1 worked for immunohistochemistry on formalin-fixed paraffin embedded canine tissues, suggesting the usage of this antibody with archived tissues. Additionally, anti-PD-L1 (JC071) revealed significantly increased PD-L1 expression on canine monocytes after stimulation with peptidoglycan or lipopolysaccharide. Together, these antibodies display specificity for the natural canine ligand using a variety of potential diagnostic applications. Importantly, multiple PD-L1-specific antibodies amplified IFN-γ production in a canine peripheral blood mononuclear cells (PBMC) concanavlin A (Con A) stimulation assay, demonstrating functional activity.


Assuntos
Anticorpos Monoclonais/imunologia , Antígeno B7-H1/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Cães , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Peptidoglicano/farmacologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/metabolismo
15.
Ann N Y Acad Sci ; 1461(1): 73-103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31025378

RESUMO

Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Tolerância Imunológica , Receptores de Superfície Celular/metabolismo , Animais , Autoanticorpos/biossíntese , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Humanos , Fatores de Risco
16.
PLoS Pathog ; 15(9): e1008077, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557273

RESUMO

Influenza A virus (IAV) is a seasonal pathogen with the potential to cause devastating pandemics. IAV infects multiple epithelial cell subsets in the respiratory tract, eliciting damage to the lungs. Clearance of IAV is primarily dependent on CD8+ T cells, which must balance control of the infection with immunopathology. Using a virus expressing Cre recombinase to permanently label infected cells in a Cre-inducible reporter mouse, we previously discovered infected club cells that survive both lytic virus replication and CD8+ T cell-mediated clearance. In this study, we demonstrate that ciliated epithelial cells, type I and type II alveolar cells can also become survivor cells. Survivor cells are stable in the lung long-term and demonstrate enhanced proliferation compared to uninfected cells. When we investigated how survivor cells evade CD8+ T cell killing we observed that survivor cells upregulated the inhibitory ligand PD-L1, but survivor cells did not use PD-L1 to evade CD8+ T cell killing. Instead our data suggest that survivor cells are not inherently resistant to CD8+ T cell killing, but instead no longer present IAV antigen and cannot be detected by CD8+ T cells. Finally, we evaluate the failure of CD8+ T cells to kill these previously infected cells. This work demonstrates that additional cell types can survive IAV infection and that these cells robustly proliferate and are stable long term. By sparing previously infected cells, the adaptive immune system may be minimizing pathology associated with IAV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Evasão da Resposta Imune , Influenza Humana/imunologia , Influenza Humana/virologia , Imunidade Adaptativa , Animais , Antígeno B7-H1/imunologia , Proliferação de Células , Sobrevivência Celular/imunologia , Citotoxicidade Imunológica , Humanos , Imunidade Celular , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/patologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/imunologia
17.
Nat Metab ; 1(5): 509-518, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31423480

RESUMO

Type 1 diabetes (T1D) is characterized by pancreatic islet infiltration by autoreactive immune cells and a near-total loss of ß-cells1. Restoration of insulin-producing ß-cells coupled with immunomodulation to suppress the autoimmune attack has emerged as a potential approach to counter T1D2-4. Here we report that enhancing ß-cell mass early in life, in two models of female NOD mice, results in immunomodulation of T-cells, reduced islet infiltration and lower ß-cell apoptosis, that together protect them from developing T1D. The animals displayed altered ß-cell antigens, and islet transplantation studies showed prolonged graft survival in the NOD-LIRKO model. Adoptive transfer of splenocytes from the NOD-LIRKOs prevented development of diabetes in pre-diabetic NOD mice. A significant increase in the splenic CD4+CD25+FoxP3+ regulatory T-cell (Treg) population was observed to underlie the protected phenotype since Treg depletion rendered NOD-LIRKO mice diabetic. The increase in Tregs coupled with activation of TGF-ß/SMAD3 signaling pathway in pathogenic T-cells favored reduced ability to kill ß-cells. These data support a previously unidentified observation that initiating ß-cell proliferation, alone, prior to islet infiltration by immune cells alters the identity of ß-cells, decreases pathologic self-reactivity of effector cells and increases Tregs to prevent progression of T1D.


Assuntos
Proliferação de Células , Diabetes Mellitus Tipo 1/patologia , Sistema Imunitário/imunologia , Células Secretoras de Insulina/patologia , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Progressão da Doença , Humanos , Camundongos
18.
J Immunol ; 203(4): 844-852, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31324724

RESUMO

Programmed death-1 (PD-1) inhibits T and B cell function upon ligand binding. PD-1 blockade revolutionized cancer treatment, and although numerous patients respond, some develop autoimmune-like symptoms or overt autoimmunity characterized by autoantibody production. PD-1 inhibition accelerates autoimmunity in mice, but its role in regulating germinal centers (GC) is controversial. To address the role of PD-1 in the GC reaction in type 1 diabetes, we used tetramers to phenotype insulin-specific CD4+ T and B cells in NOD mice. PD-1 or PD-L1 deficiency, and PD-1 but not PD-L2 blockade, unleashed insulin-specific T follicular helper CD4+ T cells and enhanced their survival. This was concomitant with an increase in GC B cells and augmented insulin autoantibody production. The effect of PD-1 blockade on the GC was reduced when mice were treated with a mAb targeting the insulin peptide:MHC class II complex. This work provides an explanation for autoimmune side effects following PD-1 pathway inhibition and suggests that targeting the self-peptide:MHC class II complex might limit autoimmunity arising from checkpoint blockade.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Antígeno B7-H1/imunologia , Diabetes Mellitus Experimental/imunologia , Feminino , Centro Germinativo/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD
20.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052404

RESUMO

Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. An increase in numbers of vulvar mast cells often accompanies a clinical diagnosis of vulvodynia and a history of allergies amplifies the risk of developing this condition. We previously showed that repeated exposures to oxazolone dissolved in ethanol on the labiar skin of mice led to persistent genital sensitivity to pressure and a sustained increase in labiar mast cells. Here we sensitized female mice to the hapten dinitrofluorobenzene (DNFB) dissolved in saline on their flanks, and subsequently challenged them with the same hapten or saline vehicle alone for ten consecutive days either on labiar skin or in the vaginal canal. We evaluated tactile ano-genital sensitivity, and tissue inflammation at serial timepoints. DNFB-challenged mice developed significant, persistent tactile sensitivity. Allergic sites showed mast cell accumulation, infiltration of resident memory CD8+CD103+ T cells, early, localized increases in eosinophils and neutrophils, and sustained elevation of serum Immunoglobulin E (IgE). Therapeutic intra-vaginal administration of Δ9-tetrahydrocannabinol (THC) reduced mast cell accumulation and tactile sensitivity. Mast cell-targeted therapeutic strategies may therefore provide new ways to manage and treat vulvar pain potentially instigated by repeated allergenic exposures.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Dronabinol/uso terapêutico , Hipersensibilidade/complicações , Mastócitos/efeitos dos fármacos , Tato , Vulvodinia/tratamento farmacológico , Analgésicos não Narcóticos/farmacologia , Animais , Dinitrofluorbenzeno/toxicidade , Dronabinol/farmacologia , Feminino , Imunoglobulina E/sangue , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Mastócitos/imunologia , Camundongos , Vulvodinia/etiologia , Vulvodinia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA