Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534446

RESUMO

Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and human health risks. Bacteriophages (phages) constitute an ecological, safe, and sustainable fire blight control alternative. The goal of this study was to search for specific E. amylovora phages from plant material, soil, and water samples in Mediterranean environments. A collection of phages able to specifically infect and lyse E. amylovora strains was generated from former fire blight-affected orchards in Eastern Spain. Following in vitro characterization, assays in immature fruit revealed that preventively applying some of the phages or their combinations delayed the onset of fire blight symptoms and reduced the disease's severity, suggesting their biocontrol potential in Spain and other countries. The morphological and molecular characterization of the selected E. amylovora phages classified them as members of the class Caudoviricetes (former Myoviridae family) and genus Kolesnikvirus. This study reveals Mediterranean settings as plausible sources of E. amylovora-specific bacteriophages and provides the first effective European phage cocktails in plant material for the development of sustainable fire blight management measures.

2.
Viruses ; 15(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37112822

RESUMO

Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive diseases of solanaceous plants, affecting staple crops worldwide. The bacterium survives in water, soil, and other reservoirs, and is difficult to control. In this sense, the use of three specific lytic R. solanacearum bacteriophages was recently patented for bacterial wilt biocontrol in environmental water and in plants. To optimize their applications, the phages and the bacterium need to be accurately monitored and quantified, which is laborious and time-consuming with biological methods. In this work, primers and TaqMan probes were designed, and duplex and multiplex real-time quantitative PCR (qPCR) protocols were developed and optimized for the simultaneous quantification of R. solanacearum and their phages. The quantification range was established from 108 to 10 PFU/mL for the phages and from 108 to 102 CFU/mL for R. solanacearum. Additionally, the multiplex qPCR protocol was validated for the detection and quantification of the phages with a limit ranging from 102 targets/mL in water and plant extracts to 103 targets/g in soil, and the target bacterium with a limit ranging from 103 targets/mL in water and plant extracts to 104 targets/g in soil, using direct methods of sample preparation.


Assuntos
Bacteriófagos , Ralstonia solanacearum , Bacteriófagos/genética , Reação em Cadeia da Polimerase em Tempo Real , Doenças das Plantas/microbiologia , Produtos Agrícolas
3.
Environ Microbiol Rep ; 14(4): 559-569, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403335

RESUMO

Control of bacterial plant diseases is a major concern, as they affect economically important species and spread easily, such as the case of fire blight of rosaceous caused by Erwinia amylovora. In the search for alternatives to the use of agrochemicals and antibiotics, this work presents a screening of natural bacterial antagonists of this relevant and devastating phytopathogen. We recovered bacterial isolates from different plant tissues and geographical origins and then selected those with the strongest ability to reduce fire blight symptoms ex vivo and remarkable in vitro antagonistic activity against E. amylovora. None of them elicited a hypersensitivity reaction in tobacco leaves, most produced several hydrolytic enzymes and presented other biocontrol and/or plant growth-promoting activities, such as siderophore production and phosphate solubilization. These isolates, considered as biocontrol candidates, were identified by 16S rRNA sequencing as Pseudomonas rhizosphaerae, Curtobacterium flaccumfaciens, Enterobacter cancerogenus, Pseudomonas azotoformans, Rosenbergiella epipactidis and Serratia plymuthica. This is the first time that the last five bacterial species are reported to have biocontrol potential against E. amylovora.


Assuntos
Erwinia amylovora , Malus , Microbiota , Bactérias/genética , Erwinia amylovora/genética , Malus/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética
4.
Viruses ; 14(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215777

RESUMO

Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.


Assuntos
Bacteriófagos/química , Bacteriófagos/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Conservação de Alimentos/métodos , Doenças das Plantas/prevenção & controle , Ralstonia solanacearum/virologia , Solanum lycopersicum/microbiologia , Conservação de Alimentos/economia , Liofilização , Frutas/economia , Frutas/microbiologia , Solanum lycopersicum/economia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia
5.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960808

RESUMO

Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive plant diseases. While chemical control has an environmental impact, biological control strategies can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with biocontrol capacity in environmental water and plants were isolated from river water in Europe but not fully analysed, their genomic characterization being fundamental to understand their biology. In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The morphology was also observed by electron microscopy. Phylogenetic analyses were performed with a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase, this type of depolymerase being identified in R. solanacearum phages for the first time. These three European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae family (formerly Podoviridae). These genomic data will contribute to a better understanding of the abilities of these phages to damage host cells and, consequently, to an improvement in the biological control of R. solanacearum.


Assuntos
Bacteriófagos/genética , Genoma Viral , Glicosídeo Hidrolases/metabolismo , Controle Biológico de Vetores/métodos , Ralstonia solanacearum/virologia , Bacteriófagos/classificação , Bacteriófagos/enzimologia , Bacteriófagos/ultraestrutura , Fases de Leitura Aberta , Filogenia , Vírion/ultraestrutura
6.
Front Microbiol ; 11: 564030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312168

RESUMO

Antibiotic misuse is a public health problem due to the appearance of resistant strains in almost all human pathogens, making infectious diseases more difficult to treat. The search for solutions requires the development of new antimicrobials as well as novel strategies, including increasing social awareness of the problem. The Small World Initiative (SWI) and the Tiny Earth (TE) network are citizen science programs pursuing the discovery of new antibiotics from soil samples and the promotion of scientific culture. Both programs aim to bring scientific culture and microbiological research closer to pre-university students through a crowdsourcing strategy and a Service Learning (SL) educational approach, with a 2-fold objective: to encourage students to pursue careers in science and to involve them in the discovery of soil microorganisms producing new antimicrobials. SWI and TE projects were put into practice in Spain under the common name MicroMundo. MicroMundo@Valencia was implemented at the Universitat de València (UV) during the academic years 2017-2018 and 2018-2019. It trained 140 university students to disseminate this initiative into 23 high/secondary schools, and one primary school, involving about 900 people (teachers and students) as researchers. A total of 7,002 bacterial isolates were obtained from 366 soil samples and tested for antibiosis at UV and high/secondary school centers. About 1 or 7% of them produced inhibition halos for the Escherichia coli or Bacillus cereus target strains, respectively. Geolocation of sampling sites by an application developed ad hoc and Kriging analysis also allowed detection of soil foci of antibiotic-producing bacteria. Evaluation of the project by university, high/secondary, and primary school students revealed their strong positive perception and their increased interest in science, as a consequence of acquiring new scientific and pedagogical concepts and skills that they were able to pass on to other classmates, younger students, or relatives. To further expand the dissemination of the project in the Valencian Community, diverse extramural activities deemed to include a gender perspective and aimed at different age groups, were also carried out, obtaining very satisfactory results, increasing sensitivity and awareness to the global antibiotic crisis.

7.
FEMS Microbiol Ecol ; 96(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33038244

RESUMO

Fire blight caused by Erwinia amylovora affects pome fruit worldwide, generating serious economic losses. Despite the abundant literature on E. amylovora infection mechanisms of aerial plant organs, root infection routes remain virtually unexplored. Assessing these infection pathways is necessary for a full understanding of the pathogen's ecology. Using the pathosystem Pyrus communis-E. amylovora and different experimental approaches including a green fluorescent protein transformant (GFP1) and epifluorescence microscopy (EFM) and laser confocal scanning microscopy (LCSM), we demonstrated the pathogen's ability to infect, colonize and invade pear roots and cause characteristic fire blight symptoms both in the aerial part and in the root system. Plant infections after soil irrigation with E. amylovora-contaminated water were favored by root damage, which agreed with EFM and LCSM observations. E. amylovora GFP1 cells formed aggregates/biofilms on root surfaces and invaded the cortex through wounds and sites of lateral root emergence. Sugars, sugar-alcohols and amino acids typically secreted by roots, favored the in vitro biofilm development by E. amylovora. Migration of E. amylovora cells to aerial tissues mainly occurred after xylem penetration. Overall, our findings revealed, for the first time, common root infection patterns between E. amylovora and well-known soil borne plant pathogens and endophytes.


Assuntos
Erwinia amylovora , Malus , Pyrus , Frutas , Doenças das Plantas
8.
Mol Plant Pathol ; 19(4): 922-934, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28675630

RESUMO

The life cycle of the plant pathogen Erwinia amylovora comprises periods inside and outside the host in which it faces oxidative stress caused by hydrogen peroxide (H2 O2 ) and other compounds. The sources of this stress are plant defences, other microorganisms and/or exposure to starvation or other environmental challenges. However, the functional roles of H2 O2 -neutralizing enzymes, such as catalases, during plant-pathogen interactions and/or under starvation conditions in phytopathogens of the family Erwiniaceae or closely related families have not yet been investigated. In this work, the contribution of E. amylovora catalases KatA and KatG to virulence and survival in non-host environments was determined using catalase gene mutants and expression, as well as catalase activity analyses. The participation of E. amylovora exopolysaccharides (EPSs) in oxidative stress protection was also investigated. Our study revealed the following: (i) a different growth phase regulation of each catalase, with an induction by H2 O2 and host tissues; (ii) the significant role of E. amylovora catalases as virulence and survival factors during plant-pathogen interactions; (iii) the induction of EPSs by H2 O2 despite the fact that apparently they do not contribute to protection against this compound; and (iv) the participation of both catalases in the detoxification of the starvation-induced intracellular oxidative stress, favouring the maintenance of culturability, and hence delaying the development of the viable but non-culturable (VBNC) response.


Assuntos
Catalase/metabolismo , Erwinia amylovora/enzimologia , Erwinia amylovora/patogenicidade , Fatores de Virulência/metabolismo , Catalase/genética , Erwinia amylovora/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/farmacologia , Espectrometria de Massas , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Doenças das Plantas/microbiologia , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...