Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(29): 4308-4311, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36939182

RESUMO

We demonstrate that sequential disproportionation reactions can enable selective aggregation of two- or four electron-holes at a hypervalent iodine center. Disproportionation of an anodically generated iodanyl radical affords an iodosylbenzene derivative. Subsequent iodosylbenzene disproportionation can be triggered to provide access to an iodoxybenzene. These results demonstrate multielectron oxidation at the one-electron potential by selective and sequential disproportionation chemistry.

2.
J Am Chem Soc ; 144(30): 13913-13919, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35856717

RESUMO

Small molecule redox mediators convey interfacial electron transfer events into bulk solution and can enable diverse substrate activation mechanisms in synthetic electrocatalysis. Here, we report that 1,2-diiodo-4,5-dimethoxybenzene is an efficient electrocatalyst for C-H/E-H coupling that operates at as low as 0.5 mol % catalyst loading. Spectroscopic, crystallographic, and computational results indicate a critical role for a three-electron I-I bonding interaction in stabilizing an iodanyl radical intermediate (i.e., formally I(II) species). As a result, the optimized catalyst operates at more than 100 mV lower potential than the related monoiodide catalyst 4-iodoanisole, which results in improved product yield, higher Faradaic efficiency, and expanded substrate scope. The isolated iodanyl radical is chemically competent in C-N bond formation. These results represent the first examples of substrate functionalization at a well-defined I(II) derivative and bona fide iodanyl radical catalysis and demonstrate one-electron pathways as a mechanistic alternative to canonical two-electron hypervalent iodine mechanisms. The observation establishes I-I redox cooperation as a new design concept for the development of metal-free redox mediators.


Assuntos
Iodo , Catálise , Transporte de Elétrons , Iodetos , Estrutura Molecular , Oxirredução
3.
Angew Chem Int Ed Engl ; 60(51): 26647-26655, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34662473

RESUMO

Manganese complexes supported by macrocyclic tetrapyrrole ligands represent an important platform for nitrene transfer catalysis and have been applied to both C-H amination and olefin aziridination catalysis. The reactivity of the transient high-valent Mn nitrenoids that mediate these processes renders characterization of these species challenging. Here we report the synthesis and nitrene transfer photochemistry of a family of MnIII N-haloamide complexes. The S=2 N-haloamide complexes are characterized by 1 H NMR, UV-vis, IR, high-frequency and -field EPR (HFEPR) spectroscopies, and single-crystal X-ray diffraction. Photolysis of these complexes results in the formal transfer of a nitrene equivalent to both C-H bonds, such as the α-C-H bonds of tetrahydrofuran, and olefinic substrates, such as styrene, to afford aminated and aziridinated products, respectively. Low-temperature spectroscopy and analysis of kinetic isotope effects for C-H amination indicate halogen-dependent photoreactivity: Photolysis of N-chloroamides proceeds via initial cleavage of the Mn-N bond to generate MnII and amidyl radical intermediates; in contrast, photolysis of N-iodoamides proceeds via N-I cleavage to generate a MnIV nitrenoid (i.e., {MnNR}7 species). These results establish N-haloamide ligands as viable precursors in the photosynthesis of metal nitrenes and highlight the power of ligand design to provide access to reactive intermediates in group-transfer catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...