Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946153

RESUMO

Leaves of Lippia thymoides (Verbenaceae) were dried in an oven at 40, 50 and 60 °C and the kinetic of drying and the influence of the drying process on the chemical composition, yield, and DPPH radical scavenging activity of the obtained essential oils were evaluated. The composition of the essential oils was determined with gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses. The influence of drying on the chemical composition of the essential oils of L. thymoides was evaluated by multivariate analysis, and their antioxidant activity was investigated via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The Midilli model was the most appropriate to describe the behavior of drying kinetic data of L. thymoides leaves. Thymol was the major compound for all analyzed conditions; the maximum content was obtained from fresh leaves (62.78 ± 0.63%). The essential oils showed DPPH radical scavenging activity with an average of 73.10 ± 12.08%, and the fresh leaves showed higher inhibition (89.97 ± 0.31%). This is the first study to evaluate the influence of drying on the chemical composition and antioxidant activity of L. thymoides essential oils rich in thymol.


Assuntos
Antioxidantes/química , Lippia/química , Óleos Voláteis/química , Óleos de Plantas/química , Timol/química , Antioxidantes/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Óleos Voláteis/farmacologia , Folhas de Planta/química , Óleos de Plantas/farmacologia , Temperatura , Timol/farmacologia
2.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408699

RESUMO

Essential oils have shown promise as antiviral agents against several pathogenic viruses. In this work we hypothesized that essential oil components may interact with key protein targets of the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A molecular docking analysis was carried out using 171 essential oil components with SARS-CoV-2 main protease (SARS-CoV-2 Mpro), SARS-CoV-2 endoribonucleoase (SARS-CoV-2 Nsp15/NendoU), SARS-CoV-2 ADP-ribose-1″-phosphatase (SARS-CoV-2 ADRP), SARS-CoV-2 RNA-dependent RNA polymerase (SARS-CoV-2 RdRp), the binding domain of the SARS-CoV-2 spike protein (SARS-CoV-2 rS), and human angiotensin-converting enzyme (hACE2). The compound with the best normalized docking score to SARS-CoV-2 Mpro was the sesquiterpene hydrocarbon (E)-ß-farnesene. The best docking ligands for SARS-CoV Nsp15/NendoU were (E,E)-α-farnesene, (E)-ß-farnesene, and (E,E)-farnesol. (E,E)-Farnesol showed the most exothermic docking to SARS-CoV-2 ADRP. Unfortunately, the docking energies of (E,E)-α-farnesene, (E)-ß-farnesene, and (E,E)-farnesol with SARS-CoV-2 targets were relatively weak compared to docking energies with other proteins and are, therefore, unlikely to interact with the virus targets. However, essential oil components may act synergistically, essential oils may potentiate other antiviral agents, or they may provide some relief of COVID-19 symptoms.


Assuntos
Infecções por Coronavirus/terapia , Óleos Voláteis/uso terapêutico , Pneumonia Viral/terapia , Proteínas Virais/metabolismo , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , COVID-19 , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2 , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...