Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36015277

RESUMO

In the present work, we propose the development of a novel carrier that does not need organic solvents for its preparation and with the potential for the intravenous delivery of lipophilic and hydrophilic drugs. Named lipomics, this is a mixed colloid of micelles incorporated within a liposome. This system was designed through ternary diagrams and characterized by physicochemical techniques to determine the particle size, zeta potential, shape, morphology, and stability properties. The lipomics were subjected to electron microscopy (SEM, TEM, and STEM) to evaluate their physical size and morphology. Finally, pharmacokinetic studies were performed by radiolabeling the lipomics with Technetium-99m chelated with BMEDA to evaluate the in vivo biodistribution through techniques of molecular imaging (microSPECT/CT) in rats. Radiolabeling efficiency was used to compare the encapsulation efficiency of the hydrophilic and lipophilic molecules in lipomics and liposomes. According to the results, lipomics are potentially carriers of lipophilic and hydrophilic drugs.

2.
Molecules ; 23(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200551

RESUMO

With the aim improving drug delivery, liposomes have been employed as carriers for chemotherapeutics achieving promising results; their co-encapsulation with magnetic nanoparticles is evaluated in this work. The objective of this study was to examine the physicochemical characteristics, the pharmacokinetic behaviour, and the efficacy of pegylated liposomes loaded with cisplatin and magnetic nanoparticles (magnetite) (Cis-MLs). Cis-MLs were prepared by a modified reverse-phase evaporation method. To characterize their physicochemical properties, an evaluation was made of particle size, ζ-potential, phospholipid and cholesterol concentration, phase transition temperature (Tm), the encapsulation efficiency of cisplatin and magnetite, and drug release profiles. Additionally, pharmacokinetic studies were conducted on normal Wistar rats, while apoptosis and the cytotoxic effect were assessed with HeLa cells. We present a method for simultaneously encapsulating cisplatin at the core and also embedding magnetite nanoparticles on the membrane of liposomes with a mean vesicular size of 104.4 ± 11.5 nm and a ζ-potential of -40.5 ± 0.8 mV, affording a stable formulation with a safe pharmacokinetic profile. These liposomes elicited a significant effect on cell viability and triggered apoptosis in HeLa cells.


Assuntos
Cisplatino/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Cisplatino/farmacocinética , Liberação Controlada de Fármacos , Células HeLa , Humanos , Lipossomos/química , Lipossomos/farmacologia , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...