Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(8): 5909-5915, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662655

RESUMO

Materials with optical gain in the infrared are of paramount importance for optical communications, medical diagnostics, and silicon photonics. The current technology is based either on costly III-V semiconductors that are not monolithic to silicon CMOS technology or Er-doped fiber technology that does not make use of the full fiber transparency window. Colloidal quantum dots (CQDs) offer a unique opportunity as an optical gain medium in view of their tunable bandgap, solution processability, and CMOS compatibility. The 8-fold degeneracy of infrared CQDs based on Pb-chalcogenides has hindered the demonstration of low-threshold optical gain and lasing, at room temperature. We demonstrate room-temperature, infrared, size-tunable, band-edge stimulated emission with a line width of ∼14 meV. Leveraging robust electronic doping and charge-exciton interactions in PbS CQD thin films, we reach a gain threshold at the single exciton regime representing a 4-fold reduction from the theoretical limit of an 8-fold degenerate system, with a net modal gain in excess of 100 cm-1.

2.
ACS Photonics ; 7(3): 588-595, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32215281

RESUMO

Two major challenges exist before colloidal nanocrystal solar cells can take their place in the market: So far, these devices are based on Pb/Cd-containing nanocrystals, and second, the synthesis of these nanocrystals takes place in an inert atmosphere at elevated temperatures due to the use of air-sensitive chemicals. In this report, a room-temperature, ambient-air synthesis for nontoxic AgBiS2 nanocrystals is presented. As this method utilizes stable precursors, the need for the use of a protective environment is eliminated, enabling the large-scale production of AgBiS2 nanocrystals. The production cost of AgBiS2 NCs at room temperature and under ambient conditions reduces by ∼60% compared to prior reports based on hot injection, and the solar cells made of these nanocrystals yield a promising power conversion efficiency (PCE) of 5.5%, the highest reported to date for a colloidal nanocrystal material free of Pb or Cd synthesized at room temperature and under ambient conditions.

3.
Phys Chem Chem Phys ; 19(32): 21729-21738, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28776626

RESUMO

Doping oxide materials by inserting atoms of a different element in their lattices is a common procedure for modifying properties of the host oxide. Using catalytically active, yet expensive noble metals as dopants allows synthesizing materials with atomically dispersed metal atoms, which can become cost-efficient catalysts. The stability and chemical properties of the resulting materials depend on the structure of the host oxide and on the position of the dopant atoms in it. In the present work we analyze by means of density functional calculations the relative stability and redox properties of cerium dioxide (ceria) nanoparticles doped with atoms of four technologically relevant transition metals - Pt, Pd, Ni and Cu. Our calculations indicate that the dopants are most stable at surface positions of ceria nanoparticles, highlighting the role of under-coordinated sites in the preparation and characterization of doped nanostructured oxides. The energies of two catalytically important reduction reactions - the formation of oxygen vacancies and homolytic dissociative adsorption of H2 - are found to strongly depend on the position of the doping atoms in nanoparticulate ceria.

4.
Phys Chem Chem Phys ; 18(11): 7672-9, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26908194

RESUMO

The reactivity of atomically dispersed Pt(2+) species on the surface of nanostructured CeO2 films and the mechanism of H2 activation on these sites have been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy in combination with density functional calculations. Isolated Pt(2+) sites are found to be inactive towards H2 dissociation due to high activation energy required for H-H bond scission. Trace amounts of metallic Pt are necessary to initiate H2 dissociation on Pt-CeO2 films. H2 dissociation triggers the reduction of Ce(4+) cations which, in turn, is coupled with the reduction of Pt(2+) species. The mechanism of Pt(2+) reduction involves reverse oxygen spillover and formation of oxygen vacancies on Pt-CeO2 films. Our calculations suggest the existence of a threshold concentration of oxygen vacancies associated with the onset of Pt(2+) reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...