Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572693

RESUMO

Healthcare-associated infections (HAI) are illnesses acquired during healthcare and are often the most important adverse event during healthcare. With the aim of increasing the effectiveness of disinfection/decontamination processes in the health service with safe and not promote microbial resistance, we propose the development of portable equipment associated with type C ultraviolet light (UVC). The efficiency of the irradiance emitted by the equipment (at dosages 3.5, 5.0, and 60 mJ/cm2) was determined by the action exerted after exposure against four different bacterial (Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) and three different fungi (Candida albicans, C. parapsilosis, and Aspergillus section Fumigati). It was possible to observe that all treatments were capable of inactivating the bacterial species evaluated (p < 0.05), causing the irreversible death of these microorganisms. The most effective elimination of fungal agents was at a dose of 60 mJ/cm2 of UVC radiation, with a decrease in the fungal inoculum varying between 94% and 100% in relation to the control without exposure. Thus, our study showed that the application of the portable prototype with UVC light (254 nm) at a distance of 48 mm, allowed an average irradiance of 3.5 mW/cm2, with doses of 3.5 ≈ 60 mJ/cm2 (from 1 to 60 s of exposure), which can promote the total reduction of the bacteria evaluated and significantly reduce fungal growth. Therefore, this prototype could be used safely and effectively in the hospital environment, considerably reducing contamination and contributing to the reduction of healthcare-associated infection risk.

2.
Anticancer Agents Med Chem ; 22(17): 2985-2997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469576

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a therapeutic intervention that can be applied to cancer treatment. The interaction between a photosensitizer (PS), ideal wavelength radiation, and tissue molecular oxygen triggers a series of photochemical reactions responsible for producing reactive oxygen species. These highly reactive species can decrease proliferation and induce tumor cell death. The search for PS of natural origin extracted from plants becomes relevant, as they have photoactivation capacity, preferentially targeting tumor cells and because they do not present any or little toxicity to healthy cells. OBJECTIVE: Our work aimed to carry out a qualitative systematic review to investigate the effects of curcumin (CUR), a molecule considered as PS of natural origin, on PDT, using red light or near-infrared radiation in tumor models. METHODS: A systematic search was performed in three databases (PubMed, Scopus, and Web of Science) using the PICOT method, retrieving a total of 1,373 occurrences. At the end of the peer screening, 25 eligible articles were included in this systematic review using inclusion, exclusion, and eligibility criteria. RESULTS: CUR, whether in its free state, associated with metal complexes or other PS and in a nanocarrier system, was considered a relevant PS for PDT using red light or near-infrared against tumoral models in vitro and in vivo, acting by increasing cytotoxicity, inhibiting proliferation, inducing cell death mainly by apoptosis, and changing oxidative parameters. CONCLUSION: The results found in this systematic review suggest the potential use of CUR as a PS of natural origin to be applied in PDT against many neoplasms, encouraging further search in PDT against cancer and serving as an investigative basis for upcoming pre-clinical and clinical applications.


Assuntos
Curcumina , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Curcumina/farmacologia , Humanos , Luz , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
3.
Anticancer Agents Med Chem ; 21(14): 1911-1920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397267

RESUMO

BACKGROUND: Quercetin has potential against the Multidrug Resistance (MDR) phenotype, but with low bioavailability. The increase in the bioavailability can be obtained with nanostructures. OBJECTIVE: To analyze the effects of quercetin and its nanoemulsion on MDR and non-MDR cells. METHODS: We used high-pressure homogenization for nanoemulsion production; Trypan Blue for cytostatic/cytotoxicity assays; Epifluorescence microscope (with specific probes) for apoptosis and DNA damage; Real-Time PCR for gene expression; AutoDock Vina for docking and Flow Cytometry for efflux analysis. Quercetin exerted antiproliferative impact, induced apoptosis, necrosis and DNA damage on cells. RESULTS: Quercetin combined with vincristine showed an effect similar to verapamil (an ABCB1 inhibitor), and docking showed that it binds to ABCB1 in a similar region. Quercetin was also capable of altering ABCB1 gene expression. Quercetin in nanoemulsion maintained the cytotoxic and cytostatic effects of quercetin, which may increase bioavailability. Besides, the unloaded nanoemulsion was able to inhibit per se the efflux activity of ABCB1, demonstrating pharmacological action of this structure. CONCLUSION: Quercetin may be considered as a prospective drug to overcome resistance in cancer cells and its nanoemulsion can be an alternative for in vivo application.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Eritroblástica Aguda/tratamento farmacológico , Nanopartículas/química , Quercetina/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Emulsões , Citometria de Fluxo , Humanos , Leucemia Eritroblástica Aguda/patologia , Simulação de Acoplamento Molecular , Quercetina/química , Células Tumorais Cultivadas
4.
Cell Mol Neurobiol ; 41(1): 91-104, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32236902

RESUMO

Photodynamic therapy (PDT) is a potential therapeutic modality against cancer, resulting from the interaction of a photosensitizer (PS) and radiation that generates damage to tumor cells. The use of near-infrared radiation (IR-A) is relevant because presents recognized biological effects, such as antioxidant, neuroprotective and antitumor effects. Glioblastoma is the most aggressive central nervous system (CNS) neoplasm with high proliferation and tissue invasion capacity and is resistant to radio and chemotherapy. Here, we evaluated in vitro the possible interaction of temozolomide (TMZ) with IR-A in a glioblastoma cell line (C6) and in a human keratinocyte cell line (HaCat) how non-tumor cell model, in an attempt to search for a new treatment strategy. The effects of TMZ, IR-A and the interaction between TMZ and IR-A was evaluated by viability exclusion with trypan blue. To perform the interaction experiments, we have chosen 10 µM TMZ and 4.5 J/cm2 of IR-A. From this, we evaluated cytotoxicity, cell proliferation, intracellular reactive oxygen species levels (ROS), as well as the process of cell migration and the P-gp and MRP-1 activity. Cell death mainly due to apoptosis, followed by necrosis, decreased cell proliferation, increased ROS levels, decreased cell migration and decreased P-gp and MRP1 activity were observed only when there was interaction between TMZ and IR-A in the C6 cell line. The interaction between TMZ and IR-A was not able to affect cell proliferation in the HaCat non-tumor cell line. Our results suggest that this interaction could be a promising approach and that in the future may serve as an antitumor strategy for PDT application.


Assuntos
Glioblastoma/terapia , Raios Infravermelhos/uso terapêutico , Temozolomida/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fluorescência , Células HaCaT , Humanos , Índice Mitótico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Necrose , Ratos , Espécies Reativas de Oxigênio/metabolismo , Temozolomida/farmacologia
5.
Cell Biol Int ; 43(2): 214-219, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30597722

RESUMO

Chemotherapy may be followed by multiple drug resistance (MDR). This is an obstacle in the treatment of cancer. It is therefore essential to understand the mechanisms underlying tumor resistance, especially those involved in the cell target/MDR relationship. To investigate this, the effects of exposing cells to UVB (to target DNA), UVA, and H2 O2 (to target the cell membrane) were observed in K562 (non MDR) and FEPS (MDR) cell lines. The K562 cells were more sensitive to UVA than the FEPS cells. The FEPS cell line was more resistant to H2 O2 than K562, only presenting cytotoxicity 72 h after being exposed to 40 mM, with no ROS increase until 48 h. Both cell lines were sensitive to UVB, presenting cytotoxicity after 24 h, mainly by apoptosis, and showed an increase in ROS levels. Our results indicate that agents acting on DNA may be able to overcome the MDR phenotype.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Peróxido de Hidrogênio/farmacologia , Raios Ultravioleta , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Células K562 , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
6.
Pharmacol Rep ; 70(1): 75-80, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29331790

RESUMO

C-Phycocyanin (C-PC) has been shown to be promising in cancer treatment; however, although several articles detailing this have been published, its main mechanisms of action and its cellular targets have not yet been defined, nor has a detailed exploration been conducted of its role in the resistance of cancer cells to chemotherapy, rendering clinical use impossible. From our extensive examination of the literature, we have determined as our main hypothesis that C-PC has no one specific target, but rather acts on the membrane, cytoplasm, and nucleus with diverse mechanisms of action. We highlight the cell targets with which C-PC interacts (the MDR1 gene, cytoskeleton proteins, and COX-2 enzyme) that make it capable of killing cells resistant to chemotherapy. We also propose future analyses of the interaction between C-PC and drug extrusion proteins, such as ABCB1 and ABCC1, using in silico and in vitro studies.


Assuntos
Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Ficocianina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Ficocianina/efeitos adversos
7.
Environ Toxicol Chem ; 36(7): 1728-1737, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27371805

RESUMO

Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 104 cells/mL) were exposed to SWCNT and SWCNT-COOH (5 µg mL-1 ), STX (200 µg L-1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Saxitoxina/toxicidade , Ácidos Carboxílicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Nanotubos de Carbono/química , Espécies Reativas de Oxigênio/metabolismo , Saxitoxina/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Photochem Photobiol B ; 163: 125-32, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27567083

RESUMO

The present work evaluated the infrared-A (IR-A) protective effect using a light-emitting diode (LED) lamp against the cytotoxic effects of ultraviolet B radiation (UVB). Effects on cell viability (Trypan blue assay), DNA damage (comet assay), lipid peroxidation (FOX method), reactive oxygen species production and antioxidant capacity were analyzed in melan-a, a non-tumoral murine melanocytic cell line. To define the doses used in the interaction experiments between IR-A+UVB, dose/response curves were made after exposure to IR-A or UVB. The IR-A dose chosen was 0.8J/cm(2) because this dose caused no significant inhibition of proliferation effects and viability decreased. For UVB exposure, a dose of 0.015J/cm(2), which showed a decrease in viable cell number by approximately 50% in relation to control until 72h, was selected. For IR-A+UVB, cell proliferation recovery was showed, decreasing DNA damage and lipid peroxide content when compared to UVB alone. Besides, the results obtained for ROS and antioxidant capacity showed that the protection observed was probably not related to decreased oxidative stress. In conclusion, non-thermal IR-A was capable of protecting the melan-a cells from UVB induced damage.


Assuntos
Raios Infravermelhos , Raios Ultravioleta/efeitos adversos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular , Dano ao DNA , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Camundongos , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
9.
Leuk Res ; 42: 13-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26852002

RESUMO

The gene expression of Oct-4, a transcription factor and hematopoietic stem cell marker, is higher in Lucena lines, which is MDR, and the gene Alox-5 has also been implicated in the differentiation of some cell lines. The aim of this study was to compare the response to PMA-induced differentiation in MDR and non-MDR cells. We observed the differentiation to megakaryocytes in the K562 cell line, which is non-MDR. The expression of Alox-5 and Nanog genes was downregulated and that of Mdr-1 was upregulated in K562 cells. The Lucena cell line contained a higher number of megakaryocytes than the non-MDR, but this number was not altered by PMA, as well as Mdr-1 gene expression. However, Alox-5 expression was downregulated. Alox-5, Mdr-1, Nanog, Oct-4 and Sox-2 basal expression was also evaluated in the K562, Lucena and FEPS (also MDR) cell lines. The transcription factors gene expression was similar in MDR cell lines. The expression of Alox-5 was higher in the non-MDR cell line, while FEPS had the lowest expression of this gene. The opposite pattern was observed for Mdr-1 gene expression. These results suggest that the Alox-5 gene might play a role in the differentiation of these cell lines.


Assuntos
Araquidonato 5-Lipoxigenase/genética , Diferenciação Celular/genética , Resistência a Múltiplos Medicamentos/genética , Leucemia Eritroblástica Aguda/genética , Células-Tronco Neoplásicas/patologia , Humanos , Células K562 , Leucemia Eritroblástica Aguda/patologia , Fenótipo , Reação em Cadeia da Polimerase , Transcriptoma
10.
Biosci Rep ; 31(5): 391-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21361874

RESUMO

ASA (acetylsalicylic acid) is an NSAID (non-steroidal anti-inflammatory drug). ASA has gained attention as a potential chemopreventive and chemotherapeutic agent for several neoplasms. The aim of this study was to analyse the possible antitumoural effects of ASA in two erythroleukaemic cell lines, with or without the MDR (multidrug resistance) phenotype. The mechanism of action of different concentrations of ASA were compared in K562 (non-MDR) and Lucena (MDR) cells by analysing cell viability, apoptosis and necrosis, intracellular ROS (reactive oxygen species) formation and bcl-2, p53 and cox-2 gene expression. ASA inhibited the cellular proliferation or induced toxicity in K562 and Lucena cell lines, irrespective of the MDR phenotype. The ASA treatment provoked death by apoptosis and necrosis in K562 cells and only by necrosis in Lucena cells. ASA also showed antioxidant activity in both cell lines. The bcl-2, p53 and cox-2 genes in both cell lines treated with ASA seem to exhibit different patterns of expression. However, normal lymphocytes treated with the same ASA concentrations were more resistant than tumoral cells. The results of this work show that both cell lines responded to treatment with ASA, demonstrating a possible antitumoral and anti-MDR role for this drug.


Assuntos
Antineoplásicos/farmacologia , Aspirina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
11.
Photochem Photobiol ; 86(6): 1278-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21091482

RESUMO

The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmß-PDH (pigment dispersing hormone) or 10 µm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 µm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or ß-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and ß-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by ß-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent.


Assuntos
Braquiúros/metabolismo , Braquiúros/efeitos da radiação , Pigmentos da Retina/metabolismo , Pigmentos da Retina/efeitos da radiação , Animais , Braquiúros/efeitos dos fármacos , Técnicas In Vitro , Molsidomina/análogos & derivados , Molsidomina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Peptídeos/farmacologia , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Raios Ultravioleta
12.
Comp Biochem Physiol C Toxicol Pharmacol ; 151(3): 343-50, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20060494

RESUMO

Crustaceans are interesting models to study the effects of ultraviolet (UV) radiation, and many species may be used as biomarkers for aquatic contamination of UV radiation reaching the surface of the Earth. Here, we investigated cell damage in the visual system of crabs Neohelice granulata that were acclimated to either 12L:12D, constant light, or constant dark, and were exposed to UVA or UVB at 12:00h (noon). The production of reactive oxygen species (ROS), antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase activity, and pigment dispersion in the eye were evaluated. No significant differences from the three groups of controls (animals acclimated to 12L:12D, or in constant light, or not exposed to UV radiation) were observed in animals acclimated to 12L:12D, however, crabs acclimated to constant light and exposed to UV radiation for 30min showed a significant increase in ROS concentration, catalase activity, and LPO damage, but a decrease in ACAP compared with the controls. Crabs acclimated to constant darkness and exposed to UV for 30min showed a significantly increased ROS concentration and LPO damage, but the ACAP and catalase activity did not differ from the controls (animals kept in the dark while the experimental group was being exposed to UV radiation). Pigment dispersion in the pigment cells of eyes of animals acclimated to constant light was also observed. The results indicate that UVA and UVB alter specific oxidative parameters; however, the cell damage is more evident in animals deviated from the normal dark/light rhythm.


Assuntos
Braquiúros/efeitos da radiação , Catalase/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Raios Ultravioleta , Animais , Antioxidantes/metabolismo , Antioxidantes/efeitos da radiação , Braquiúros/fisiologia , Catalase/metabolismo , Ritmo Circadiano , Dano ao DNA , Masculino , Fotoperíodo , Pigmentos Biológicos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
13.
Biol Res ; 43(4): 429-37, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21526269

RESUMO

Onion (Allium cepa) is being studied as a potential anticancer agent, but little is known regarding its effect in multidrug resistance (MDR) cells. In this work, the cytotoxicity of crude onion extract (OE) and fractioned extract (aqueous, methanolic and ethyl acetate), as well as some onion compounds (quercetin and propyl disulfide) were evaluated in Lucena MDR human erythroleukemic and its K562 parental cell line. The capacity of OE to induce apoptosis and/or necrosis in these cells, the possible participation of oxidative stress and DNA damage were also assessed. Similar sensitivities were obtained for both tumoral cells, however only OE caused significant effects in the cells. In K562 cells, a significant increase of apoptosis was verified while the Lucena cells experienced a significant increase of necrosis. An antioxidant capacity was verified for OE discarding oxidative damage. However, OE provoked similar significant DNA damage in both cell lines. Thus, the OE capacity to overcome the MDR phenotype suggests anti-MDR action of OE.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cebolas/química , Extratos Vegetais/farmacologia , Apoptose , Dano ao DNA , Dissulfetos/análise , Dissulfetos/farmacologia , Humanos , Células K562/efeitos dos fármacos , Dose Letal Mediana , Necrose , Fenótipo , Quercetina/análise , Quercetina/farmacologia , Fatores de Tempo
14.
Biol. Res ; 43(4): 429-437, 2010. ilus
Artigo em Inglês | LILACS | ID: lil-582857

RESUMO

Onion (Allium cepa) is being studied as a potential anticancer agent, but little is known regarding its effect in multidrug resistance (MDR) cells. In this work, the cytotoxicity of crude onion extract (OE) and fractioned extract (aqueous, methanolic and ethyl acetate), as well as some onion compounds (quercetin and propyl disulfide) were evaluated in Lucena MDR human erythroleukemic and its K562 parental cell line. The capacity of OE to induce apoptosis and/or necrosis in these cells, the possible participation of oxidative stress and DNA damage were also assessed. Similar sensitivities were obtained for both tumoral cells, however only OE caused significant effects in the cells. In K562 cells, a significant increase of apoptosis was verified while the Lucena cells experienced a significant increase of necrosis. An antioxidant capacity was verified for OE discarding oxidative damage. However, OE provoked similar significant DNA damage in both cell lines. Thus, the OE capacity to overcome the MDR phenotype suggests anti-MDR action of OE.


Assuntos
Humanos , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cebolas/química , Extratos Vegetais/farmacologia , Apoptose , Dano ao DNA , Dissulfetos/análise , Dissulfetos/farmacologia , /efeitos dos fármacos , Necrose , Fenótipo , Quercetina/análise , Quercetina/farmacologia , Fatores de Tempo
15.
Photochem Photobiol ; 85(5): 1134-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19500290

RESUMO

This paper analyzes the influence of infrared radiation (IR) on regeneration, after autotomy of limb buds of Neohelice granulata and consequently the time molt. Eyestalks were ablated to synchronize the start of molt. Afterward, animals were autotomized of five pereopods and divided into control and irradiated groups. The irradiated group was treated for 30 min daily until molt. Limb buds from five animals of days 4, 16 and 20 were collected and histological sections were made from them. These sections were photographed and chitin and epithelium content measured. Another group was made, and after 15 days limb buds were extracted to analyze mitochondrial enzymatic activity from complex I and II. The irradiated group showed a significant reduction in molt time (19.38+/-1.22 days) compared with the control group (32.69+/-1.57 days) and also a significant increase in mitochondrial complex I (388.9+/-27.94%) and II (175.63+/-7.66%) in the irradiated group when compared with the control group (100+/-17.90; 100+/-7.82, respectively). However, these effects were not accompanied by histological alterations in relation to chitin and epithelium. This way, it was possible to demonstrate that IR increases complex I and II activity, reduces the time molt and consequently increases the appendage regeneration rate.


Assuntos
Crustáceos/efeitos da radiação , Raios Infravermelhos , Muda , Regeneração , Animais , Crustáceos/fisiologia , Botões de Extremidades/crescimento & desenvolvimento , Botões de Extremidades/fisiologia , Botões de Extremidades/efeitos da radiação
16.
Artigo em Inglês | MEDLINE | ID: mdl-17826358

RESUMO

Three crude extracts of Aplysina caissara, a marine sponge endemic to Brazil, were tested against a hepatoma cell line and Mycobacterium tuberculosis. The results demonstrate that all extracts are toxic and capable of inhibiting cellular growth. Additionally, the extracts produced morphological aberrations and inhibited cell attachment to culture substrates. These effects were dose/time dependent. Our results also suggest that reactive oxygen species (ROS) production is not involved in the cytotoxic processes levied by the extracts employed in this study and that active metabolites are likely to be present in the polar fractions of the crude extracts. Finally, our results indicate that all three extracts exhibit a moderate anti-tuberculosis capacity, and that the removal of an extract's lipid fraction appears to diminish this activity.


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Poríferos , Animais , Antineoplásicos/isolamento & purificação , Antituberculosos/isolamento & purificação , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Poríferos/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
17.
Photochem Photobiol ; 83(6): 1358-63, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18028209

RESUMO

Benzo[a]pyrene (BaP) is ubiquitously distributed in the environment, being considered the most phototoxic element among polycyclic aromatic hydrocarbon (PAHs). In presence of oxygen, PAHs can act as a photosensitizer by means of promoting photo-oxidation of biological molecules (photodynamic action, PDA). Thus, the present study analyzed the photodynamic action of BaP under UVA irradiation (BaP + UVA) and its oxidative effects on K562 cells. The evaluation of BaP kinetics showed that the highest intracellular concentration occurred after 18 h of incubation. Cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, DNA damage (breaks and DNA-protein cross-link [DNAPC]) were assessed after exposure to BaP, UVA and BaP plus UVA irradiation (BaP + UVA). Cell viability was decreased just after exposure to BaP + UVA. Lipid peroxidation and DNA breaks increased after BaP + UVA exposure, while the DNAPC increased after BaP, UVA and BaP + UVA exposure, suggesting that BaP + UVA effects were a consequence of both type II (producing mainly singlet oxygen) and type I (producing others ROS) mechanisms of PDA.


Assuntos
Benzo(a)pireno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , DNA/metabolismo , Dano ao DNA , Humanos , Células K562 , Cinética , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Estresse Oxidativo , Fotoquímica , Ligação Proteica , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...