Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114046, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581683

RESUMO

Environmental change, coupled with alteration in human lifestyles, is profoundly impacting the microbial communities critical to the health of the Earth and its inhabitants. To identify bacteria and fungi that are resistant and susceptible to habitat change, we analyze thousands of genera detected in 1,580 host, soil, and aquatic samples. This large-scale analysis identifies 48 bacterial and 4 fungal genera that are abundant across the three biomes, demonstrating fitness in diverse environmental conditions. Samples containing these generalists have significantly higher alpha diversity. These generalists play a significant role in shaping cross-kingdom community structure, boasting larger genomes with more secondary metabolism and antimicrobial resistance genes. Conversely, 30 bacterial and 19 fungal genera are only found in a single habitat, suggesting a limited ability to adapt to different and changing environments. These findings contribute to our understanding of microbial niche breadth and its consequences for global biodiversity loss.


Assuntos
Bactérias , Fungos , Microbiota , Microbiologia do Solo , Fungos/genética , Fungos/classificação , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Humanos , Biodiversidade , Genômica/métodos , Filogenia
2.
PLoS Comput Biol ; 17(11): e1009534, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762646

RESUMO

Computational biology has gained traction as an independent scientific discipline over the last years in South America. However, there is still a growing need for bioscientists, from different backgrounds, with different levels, to acquire programming skills, which could reduce the time from data to insights and bridge communication between life scientists and computer scientists. Python is a programming language extensively used in bioinformatics and data science, which is particularly suitable for beginners. Here, we describe the conception, organization, and implementation of the Brazilian Python Workshop for Biological Data. This workshop has been organized by graduate and undergraduate students and supported, mostly in administrative matters, by experienced faculty members since 2017. The workshop was conceived for teaching bioscientists, mainly students in Brazil, on how to program in a biological context. The goal of this article was to share our experience with the 2020 edition of the workshop in its virtual format due to the Coronavirus Disease 2019 (COVID-19) pandemic and to compare and contrast this year's experience with the previous in-person editions. We described a hands-on and live coding workshop model for teaching introductory Python programming. We also highlighted the adaptations made from in-person to online format in 2020, the participants' assessment of learning progression, and general workshop management. Lastly, we provided a summary and reflections from our personal experiences from the workshops of the last 4 years. Our takeaways included the benefits of the learning from learners' feedback (LLF) that allowed us to improve the workshop in real time, in the short, and likely in the long term. We concluded that the Brazilian Python Workshop for Biological Data is a highly effective workshop model for teaching a programming language that allows bioscientists to go beyond an initial exploration of programming skills for data analysis in the medium to long term.


Assuntos
Biologia Computacional/educação , Currículo , Linguagens de Programação , Brasil , COVID-19 , Educação a Distância , Humanos , Pandemias , Distanciamento Físico
3.
mBio ; 11(5)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051372

RESUMO

G-protein coupled receptors (GPCRs) are extracellular signaling receptors that sense environmental cues. Fungi sense their environment primarily through GPCR-mediated signaling pathways, which, in turn, regulate fungal development, metabolism, virulence, and mycotoxin biosynthesis. Aspergillus fumigatus is an important human pathogen that causes aspergillosis, a heterogeneous group of diseases that present a wide range of clinical manifestations. Here, we investigate in detail the role of the GPCRs GprM and GprJ in growth and gene expression. GprM and GprJ are important for melanin production and the regulation of the cell wall integrity (CWI) pathway. Overexpression of gprM and gprJ causes a 20 and 50% reduction in growth rate compared to the wild-type (WT) strain and increases sensitivity to cell wall-damaging agents. Phosphorylation of the CWI protein kinase MpkA is increased in the ΔgprM and ΔgprJ strains and decreased in the overexpression mutants compared to the WT strain. Furthermore, differences in cell wall polysaccharide concentrations and organization were observed in these strains. Transcriptome sequencing suggests that GprM and GprJ negatively regulate genes encoding secondary metabolites (SMs). Mass spectrometry analysis confirmed that the production of fumagillin, pyripyropene, fumigaclavine C, fumiquinazoline, and fumitremorgin is reduced in the ΔgprM and ΔgprJ strains, at least partially through the activation of MpkA. Overexpression of grpM also resulted in the regulation of many transcription factors, with AsgA predicted to function downstream of GprM and MpkA signaling. Finally, we show that the ΔgprM and ΔgprJ mutants are reduced in virulence in the Galleria mellonella insect model of invasive aspergillosis.IMPORTANCEA. fumigatus is the main etiological agent of invasive pulmonary aspergillosis, a life-threatening fungal disease that occurs in severely immunocompromised humans. Withstanding the host environment is essential for A. fumigatus virulence, and sensing of extracellular cues occurs primarily through G-protein coupled receptors (GPCRs) that activate signal transduction pathways, which, in turn, regulate fungal development, metabolism, virulence, and mycotoxin biosynthesis. The A. fumigatus genome encodes 15 putative classical GPCRs, with only three having been functionally characterized to date. In this work, we show that the two GPCRs GprM and GprJ regulate the phosphorylation of the mitogen-activated protein kinase MpkA and thus control the regulation of the cell wall integrity pathway. GprM and GprJ are also involved in the regulation of the production of the secondary metabolites fumagillin, pyripyropene, fumigaclavine C, fumiquinazoline, melanin, and fumitremorgin, and this regulation partially occurs through the activation of MpkA. Furthermore, GprM and GprJ are important for virulence in the insect model Galleria mellonella This work therefore functionally characterizes two GPCRs and shows how they regulate several intracellular pathways that have been shown to be crucial for A. fumigatus virulence.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Receptores Acoplados a Proteínas G/genética , Metabolismo Secundário , Animais , Aspergillus fumigatus/química , Regulação Fúngica da Expressão Gênica , Larva/microbiologia , Macrófagos/microbiologia , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mariposas/microbiologia , Fagocitose , Fosforilação , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...