Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 880: 163291, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023825

RESUMO

The aim of this study was to assess the environmental impacts of up-flow anaerobic sludge blanket (UASB) reactors coupled with high rate algal ponds (HRAPs) for wastewater treatment and bioenergy recovery using the Life Cycle Assessment (LCA) methodology. This solution was compared with the UASB reactor coupled with other consolidated technologies in rural areas of Brazil, such as trickling filters, polishing ponds and constructed wetlands. To this end, full-scale systems were designed based on experimental data obtained from pilot/demonstrative scale systems. The functional unit was 1 m3 of water. System boundaries comprised input and output flows of material and energy resources for system construction and operation. The LCA was performed with the software SimaPro®, using the ReCiPe midpoint method. The results showed that the HRAPs scenario was the most environmentally friendly alternative in 4 out of 8 impact categories (i.e. Global warming, Stratospheric Ozone Depletion, Terrestrial Ecotoxicity and Fossil resource scarcity). This was associated with the increase in biogas production by the co-digestion of microalgae and raw wastewater, leading to higher electricity and heat recovery. From an economic point of view, despite the HRAPs showed a higher capital cost, the operation and maintenance costs were completely offset by the revenue obtained from the electricity generated. Overall, the UASB reactor coupled with HRAPS showed to be a feasible nature-based solution to be used in small communities in Brazil, especially when microalgae biomass is valorised and used to increase biogas productivity.


Assuntos
Microalgas , Purificação da Água , Animais , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Esgotos , Lagoas , Reatores Biológicos , Estágios do Ciclo de Vida
2.
Sci Total Environ ; 865: 161210, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581294

RESUMO

Wastewater-based epidemiology (WBE) is an approach with the potential to complement clinical surveillance systems. Using WBE, it is possible to carry out an early warning of a possible outbreak, monitor spatial and temporal trends of infectious diseases, produce real-time results and generate representative epidemiological information in a territory, especially in areas of social vulnerability. Despite the historical uses of this approach, particularly in the Global Polio Eradication Initiative, and for other pathogens, it was during the COVID-19 pandemic that occurred an exponential increase in environmental surveillance programs for SARS-CoV-2 in wastewater, with many experiences and developments in the field of public health using data for decision making and prioritizing actions to control the pandemic. In Latin America, WBE was applied in heterogeneous contexts and with emphasis on populations that present many socio-environmental inequalities, a condition shared by all Latin American countries. This manuscript addresses the concepts and applications of WBE in public health actions, as well as different experiences in Latin American countries, and discusses a model to implement this surveillance system at the local or national level. We emphasize the need to implement this sentinel surveillance system in countries that want to detect the early entry and spread of new pathogens and monitor outbreaks or epidemics of infectious agents in their territories as a complement of public health surveillance systems.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , América Latina/epidemiologia , Pandemias/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2 , Surtos de Doenças/prevenção & controle
3.
Bioresour Technol ; 258: 208-219, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525596

RESUMO

The effects of temperature reduction (from 35 °C to 20 °C) on nitrogen removal performance and microbial diversity of an anammox sequencing batch reactor were evaluated. The reactor was fed for 148 days with anaerobically pretreated municipal wastewater amended with nitrite. On average, removal efficiencies of ammonium and nitrite were high (96%) during the enrichment period and phases 1 (at 35 °C) and 2 (at 25 °C), and slightly decreased (to 90%) when the reactor was operated at 20 °C. Deep sequencing analysis revealed that microbial community structure changed with temperature decrease. Anammox bacteria (Ca. Brocadia and Ca. Anammoximicrobium) and denitrifiers (Burkholderiales, Myxococcales, Rhodocyclales, Xanthomonadales, and Pseudomonadales) were favoured when the temperature was lowered from 35 °C to 25 °C, while Anaerolineales and Clostridiales were negatively affected. The results support the feasibility of using the anammox process for mainstream nitrogen removal from anaerobically pretreated municipal wastewater at typical tropical temperatures.


Assuntos
Reatores Biológicos , Purificação da Água , Anaerobiose , Desnitrificação , Nitrogênio , Oxirredução , Temperatura , Águas Residuárias
4.
Water Sci Technol ; 70(2): 315-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051479

RESUMO

Some species of microalgae have high productivity and lipid content, which makes them good candidates for biodiesel production. Biomass separation and cell disruption are important steps in biodiesel production from microalgae. In this work, we explored the fundamentals of electroflotation by alternating current (EFAC) with non-consumable electrodes to simultaneously harvest microalgae and disrupt cells from mixed microalgae obtained from waste stabilization ponds. The harvesting efficiency was evaluated using chlorophyll-a and turbidity, which reached removals of 99% and 95%, respectively, during a batch time of 140 min. Cell disruption was evaluated using lipid extraction, and the best results were achieved with a batch time of 140 min, which resulted in a 14% yield. Therefore, EFAC was shown to be an attractive potential technology for simultaneous microalgal harvesting and cell disruption.


Assuntos
Biocombustíveis , Microalgas/citologia , Lagoas , Biomassa , Técnicas Eletroquímicas , Lipídeos/biossíntese , Microalgas/metabolismo , Microalgas/fisiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...