Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Klin Lab Diagn ; 66(4): 229-236, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33878245

RESUMO

Coxiella burnetii is the causative agent of Q fever (coxiellosis), which, in addition to acute manifestations, often occurs in a latent form, is prone to chronic course and, in the absence of antibiotic therapy, has a high risk of disability or death. As a result of the presence of a wide range of clinical manifestations specific to other infectious diseases, the use of laboratory test methods (LTM) is required to make a diagnosis. The presence of Q fever anthropurgic foci in the Novosibirsk region was described in the 90s of the last century, but due attention to its laboratory diagnostics is not paid in this region. The aim of the study was to identify genetic and serological markers of the causative agent, C. burnetii, in patients of the Novosibirsk region who were admitted for treatment with fever with suspected tick-borne infections (TBIs). DNA marker of the causative agent of Q fever was detected in blood samples by real time PCR in 9 out of 325 patients. In three patients, the presence of C. burnetii DNA was confirmed by sequencing of the IS1111 and htpB gene fragments. In ELISA tests, antibodies against the causative agent of coxiellosis were detected in the blood sera of 4 patients with positive results of PCR analysis. Contact with tick was registered in 7 out of 9 patients who had C. burnetii DNA and lacked markers of other TBIs. Six people were infected in the Novosibirsk region, two suffered from tick's bite in Altai, and one case was from the Republic of Kyrgyzstan. Thus, a complex approach using both PCR analysis and ELISA provided the identification of markers of the Q fever causative agent in patients admitted with suspected TBIs, thereby differentiating it from other infections. Contact with ticks in most cases suggests that infection with C. burnetii had a transmissible pathway.


Assuntos
Coxiella burnetii , Febre Q , Carrapatos , Animais , Anticorpos Antibacterianos , Coxiella burnetii/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Quirguistão , Febre Q/diagnóstico , Febre Q/epidemiologia
2.
Phys Rev E ; 103(2-1): 022709, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735986

RESUMO

The formation of heterogeneous nematic and smectic liquid crystals in the general case of an arbitrary geometry is investigated in the framework of molecular-statistical approach [Emelyanenko and Khokhlov, J. Chem. Phys. 142, 204905 (2015)JCPSA60021-960610.1063/1.4921684]. The molecular aspects of the orientational and translational orderings at the curved surfaces of small solid objects dispersed in liquid crystal are considered, and the differential equations for gradients of the order parameters in vicinities of the small objects are presented in the general form. The five elastic constants are obtained within the same approach, from which we were able to predict that a significant space variations of the order parameters can be observed within the 0.5-0.8µm area around any small object, almost independently of its own dimension. Therefore, the liquid crystals can be a simple tool for the optical visualization of nano-objects. It is also demonstrated that the kind of molecular self-organization (smectic, nematic or conventionally isotropic) at the surfaces of small solid objects can be different from that in the bulk of mesogenic material. Totally we predict eight various combinations of simple states at the surfaces and in the bulk depending on the solid objects' size and temperature. It is also shown that the surfaces of 10µm-size solid objects and larger act almost as flat surfaces, while the surfaces of 1µm-size solid objects and smaller act almost as point defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...