Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(9): 3559-3568, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37303227

RESUMO

A tightly confined 2D electron gas with good carrier mobility and large spin-polarization is an essential ingredient for the implementation of spin-caloritronic conversion device technology. Here we give evidence that the SrTiO3/EuTiO3/LaAlO3 heterostructure is a prototype material for this purpose. The presence of Eu induces strong spin-polarization in the 2D electron gas spontaneously formed at the interface and ferromagnetic order at low temperature. Furthermore, tight 2D confinement and spin-polarization can be highly enhanced upon charge depletion, in turn generating huge thermopower associated with the phonon-drag mechanism. Most importantly, the remarkable difference in the population of the two spin channels results in the giant spin-polarized Seebeck effect and in turn, giant spin voltages of mV K-1 order at the two ends of an applied thermal gradient. Our results represent a strong assessment to the capabilities of this interface for low-temperature spin-caloritronic applications.

2.
Phys Chem Chem Phys ; 23(5): 3233-3245, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33465210

RESUMO

Hybrid lead halides CH3NH3PbX3 (X = I, Br, and Cl) have emerged as a new class of semiconductors for low-cost optoelectronic devices with superior performance. Since their perovskite crystal structure may have lattice instabilities against polar distortions, they are also being considered as potential photo-ferroelectrics. However, so far, research on their ferroelectricity has yielded inconclusive results and the subject is far from being settled. Here, we investigate, using a combined experimental and theoretical approach, the possible presence of electric polarization in tetragonal and orthorhombic CH3NH3PbBr3 (T-MAPB and O-MAPB). We found that T-MAPB does not sustain spontaneous polarization but, under an external electric field, it is projected into a metastable, ionic space-charge electret state. The electret can be frozen on cooling, producing a large and long-lasting polarization in O-MAPB. Molecular dynamics simulations show that the ferroelastic domain boundaries are able to trap charges and segregate ionic point defects, thus playing a favorable role in the stabilization of the electret. At lower temperatures, the lack of ferroelectric behavior is explained using first principles calculations as the result of the tight competition among many metastable states with randomly oriented polarization; this large configurational entropy does not allow a single polar state to dominate at any significant temperature range.

3.
Nat Commun ; 11(1): 4922, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004814

RESUMO

Using first-principles calculations we predict that the layered-perovskite metal Bi5Mn5O17 is a ferromagnet, ferroelectric, and ferrotoroid which may realize the long sought-after goal of a room-temperature ferromagnetic single-phase multiferroic with large, strongly coupled, primary-order polarization and magnetization. Bi5Mn5O17 has two nearly energy-degenerate ground states with mutually orthogonal vector order parameters (polarization, magnetization, ferrotoroidicity), which can be rotated globally by switching between ground states. Giant cross-coupling magnetoelectric and magnetotoroidic effects, as well as optical non-reciprocity, are thus expected. Importantly, Bi5Mn5O17 should be thermodynamically stable in O-rich growth conditions, and hence experimentally accessible.

4.
Inorg Chem ; 58(22): 14939-14980, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31668070

RESUMO

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis, and sensing applications", which took place within the 2018 European Materials Research Society fall meeting.

5.
J Phys Condens Matter ; 31(6): 065702, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30524117

RESUMO

We study the electronic transport coefficients and the thermoelectric figure of merit ZT in [Formula: see text]-doped Mg3Sb2 based on density-functional electronic structure and Bloch-Boltzmann transport theory with an energy- and temperature-dependent relaxation time. Both the lattice and electronic thermal conductivities affect the final ZT significantly, hence we include the lattice thermal conductivity calculated ab initio. Where applicable, our results are in good agreement with existing experiments, thanks to the treatment of lattice thermal conductivity and the improved description of electronic scattering. ZT increases monotonically in our [Formula: see text] range (300-700 K), reaching a value of 1.6 at 700 K; it peaks as a function of doping at about [Formula: see text] cm-3. At this doping, ZT [Formula: see text] 1 for [Formula: see text] K.

6.
J Phys Condens Matter ; 30(36): 365501, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30051878

RESUMO

Dialkali halides are materials of great interest from both fundamental and technological viewpoints, due to their wide transparency range. The accurate determination of their electronic, excitation and optical properties in bulk and low dimensional systems is therefore of crucial importance. Moreover, it is a challenge from the theoretical point of view to deal with quasiparticle band structure calculations for such large energy gap materials, requiring very expensive methods for achieving a desirable accuracy. Here we report electronic quasiparticle band structures for three representative bulk fluorides, BaF2, CaF2 and CdF2, calculated using two low computational cost methods, the DFT-1/2 and the PSIC schemes, which have been relatively little explored by the theoretical community so far. Our results, compared with both available experimental data and previous heavyweight DFT-GW self-energy calculations, demonstrate a satisfactory accuracy for the examined compounds, at a level comparable with the perturbative G0W0 approach. Remarkably, both our proposed methods scale quite similarly to standard local density functional approaches, thus resulting in a large saving of computational effort with respect to the computationally heavyweight GW. Our results open up the perspective of the computational exploration of much bigger fluoride systems. As a significant proof of concept of this capability, we also calculated the quasiparticle properties of the (1 1 1) surfaces of all the three systems under study. Very good agreement with experiment was found.

7.
ACS Appl Mater Interfaces ; 9(48): 42336-42343, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29111647

RESUMO

Interfaces between complex oxides constitute a unique playground for two-dimensional electron systems (2DESs), where superconductivity and magnetism can arise from combinations of bulk insulators. The 2DES at the LaAlO3/SrTiO3 interface is one of the most studied in this regard, and its origin is determined by the polar field in LaAlO3 as well as by the presence of point defects, like oxygen vacancies and intermixed cations. These defects usually reside in the conduction channel and are responsible for a decrease of the electronic mobility. In this work, we use an amorphous WO3 overlayer to obtain a high-mobility 2DES in WO3/LaAlO3/SrTiO3 heterostructures. The studied system shows a sharp insulator-to-metal transition as a function of both LaAlO3 and WO3 layer thickness. Low-temperature magnetotransport reveals a strong magnetoresistance reaching 900% at 10 T and 1.5 K, the presence of multiple conduction channels with carrier mobility up to 80 000 cm2 V-1 s-1, and quantum oscillations of conductance.

8.
ACS Nano ; 11(9): 9183-9190, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28783296

RESUMO

The origin of the dissolution of methylammonium lead trihalide (MAPI) crystals in liquid water is clarified by finite-temperature molecular dynamics by developing a MYP-based force field (MYP1) for water-MAPI systems. A thermally activated process is found with an energy barrier of 0.36 eV consisting of a layer-by-layer degradation with generation of inorganic PbI2 films and solvation of MA and I ions. We rationalize the effect of water on MAPI by identifying a transition from a reversible absorption and diffusion in the presence of vapor to the irreversible destruction of the crystal lattice in liquid due to a cooperative action of water molecules. A strong water-MAPI interaction is found with a binding energy of 0.41 eV/H2O and wetting energy of 0.23 N/m. The water vapor absorption is energetically favored (0.29 eV/H2O), and the infiltrated molecules can migrate within the crystal with a diffusion coefficient D = 1.7 × 10-8 cm2/s and activation energy of 0.28 eV.

9.
Adv Mater ; 29(18)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28262988

RESUMO

A marked conductivity enhancement is reported in 6-11 unit cell LaNiO3 thin films. A maximal conductivity is also observed in ab initio calculations for films of the same thickness. In agreement with results from state of the art scanning transmission electron microscopy, the calculations also reveal a differentiated film structure comprising characteristic surface, interior, and heterointerface structures. Based on this observation, a three-element parallel conductor model is considered and leads to the conclusion that the conductivity enhancement for films of 6-11 unit cells, stems from the onset of intercompetition between the three local structures in the film depth.

10.
J Phys Condens Matter ; 29(4): 043001, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875326

RESUMO

The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

11.
Phys Chem Chem Phys ; 18(35): 24318-24, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27531063

RESUMO

By using state-of-the-art atomistic methods we provide an accurate estimate of thermal conductivity of methylammonium lead halide as a function of sample size and temperature, in agreement with experimental works. We show that the thermal conductivity of methylammonium lead halide is intrinsically low, due to the low sound velocity of the PbI lattice. Furthermore, by selectively analyzing the effect of different molecular degrees of freedom, we clarify the role of the molecular substructure by showing that the internal modes above 150 cm(-1) (in addition to rotations) are effective in reducing the thermal conductivity of hybrid perovskites. This analysis suggests strategies to tailor the thermal conductivity by modifying the internal structure of organic cations.

12.
Nat Commun ; 7: 11211, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27040076

RESUMO

Over 50 years ago, Anderson and Blount discussed symmetry-allowed polar distortions in metals, spawning the idea that a material might be simultaneously metallic and ferroelectric. While many studies have ever since considered such or similar situations, actual ferroelectricity--that is, the existence of a switchable intrinsic electric polarization--has not yet been attained in a metal, and is in fact generally deemed incompatible with the screening by mobile conduction charges. Here we refute this common wisdom and show, by means of first-principles simulations, that native metallicity and ferroelectricity coexist in the layered perovskite Bi5Ti5O17. We show that, despite being a metal, Bi5Ti5O17 can sustain a sizable potential drop along the polar direction, as needed to reverse its polarization by an external bias. We also reveal striking behaviours, as the self-screening mechanism at work in thin Bi5Ti5O17 layers, emerging from the interplay between polar distortions and carriers in this compound.

13.
J Phys Chem Lett ; 6(24): 4909-15, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26589809

RESUMO

The actual nature of the electric polarization in hybrid lead-iodide perovskites is unveiled on the basis of ab initio and model results. A finite, albeit small electric polarization of few µC/cm(2) is found to be pervasive in this system, due to the polar-uncompensated alignment of methylammonium dimers, at least for temperature lower than the activation energy of dimer rotations; however, the presence of a large number of structural local minima corresponding to differently oriented polarization directions counteracts the stabilization of an ordered ferroelectric phase at the macroscale. According to our estimate, only for temperatures lower than 40-50 K a clear ferroelectric behavior is displayed. At higher temperature the polarization is progressively suppressed and the ferroelectric ordering hindered by the large configurational entropy, giving rise to a superparaelectric-like behavior at the macroscale.

14.
Nat Commun ; 6: 6678, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25813265

RESUMO

Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electronic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays high negative values of the order of 10(4)-10(5) µVK(-1), oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study provides direct evidence of a localized Anderson tail in the two-dimensional electron liquid at the LaAlO3/SrTiO3 interface.

15.
Phys Rev Lett ; 109(21): 217202, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215612

RESUMO

We explore via density functional calculations the magnetic doping of a topological ferroelectric as an unconventional route to multiferroicity. Vanadium doping of the layered perovskite La(2)Ti(2)O(7) largely preserves electric polarization and produces robust ferromagnetic order and, hence, proper multiferroicity. The marked tendency of dopants to cluster into chains results in an insulating character at generic doping. Ferromagnetism stems from the symmetry breaking of the multiorbital V system via an unusual "antiferro"-orbital order, and from the host's low-symmetry layered structure.

16.
Phys Rev Lett ; 106(16): 166807, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599400

RESUMO

We describe the intrinsic mechanism of 2-dimensional electron confinement at the n-type SrTiO3/LaAlO3 interface as a function of the sheet carrier density n(s) via advanced first-principles calculations. Electrons localize spontaneously in Ti 3d(xy) levels within a thin (≲2 nm) interface-adjacent SrTiO3 region for n(s) lower than a threshold value n(c)∼10(14) cm(-2). For n(s)>n(c) a portion of charge flows into Ti 3d(xz)-d(yz) levels extending farther from the interface. This intrinsic confinement can be attributed to the interface-induced symmetry breaking and localized nature of Ti 3d t(2g) states. The sheet carrier density directly controls the binding energy and the spatial extension of the conductive region. A direct, quantitative relation of these quantities with n(s) is provided.

17.
Phys Rev Lett ; 98(19): 196403, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17677639

RESUMO

Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.

18.
Phys Rev Lett ; 95(8): 086405, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-16196879

RESUMO

We investigate the interplay of bonding and magnetism in CuO by a first-principles self-interaction-free density-functional approach. Our analysis reveals that, at variance with typical low-dimensional cuprates, a fully three-dimensional view of the exchange interactions is needed to describe accurately the magnetic ground state and low-energy excitations in CuO. The apparent one-dimensional behavior of antiferromagnetic order is due to the presence of a single spin-polarized hole of d(z)2 character. This induces a strongly anisotropic magnetic ordering built up by ferromagnetic (x,y) layers, and antiferromagnetic chains along z, with exchange interactions of similar magnitude.

19.
Nat Mater ; 3(3): 164-70, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14991018

RESUMO

Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO(3), using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO(5) polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics.


Assuntos
Condutividade Elétrica , Compostos de Manganês/química , Ítrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...