Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Commun ; 6: 8372, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26496802

RESUMO

Insufficient pancreatic ß-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from ß-cells in diabetic patients, no pharmacological agents have been described that increase ß-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust ß-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces ß-cell proliferation, increases ß-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore ß-cell mass, and highlights a tractable pathway for future drug discovery efforts.


Assuntos
Proliferação de Células , Quinase 3 da Glicogênio Sintase/genética , Células Secretoras de Insulina/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Piridazinas/farmacologia , Quinases Dyrk
2.
Front Immunol ; 6: 146, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25883596
3.
Sci Transl Med ; 6(263): 263ra160, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411473

RESUMO

Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Desenho de Fármacos , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Disponibilidade Biológica
4.
PLoS One ; 9(3): e90855, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24613988

RESUMO

Elevated levels of systemic IL-10 have been associated with several chronic viral infections, including HCV, EBV, HCMV and LCMV. In the chronic LCMV infection model, both elevated IL-10 and enhanced infection of dendritic cells (DCs) are important for viral persistence. This report highlights the relationship between enhanced viral tropism for DCs and the induction of IL-10 in CD4 T cells, which we identify as the most frequent IL-10-expressing cell type in chronic LCMV infection. Here we report that infected CD8αneg DCs express elevated IL-10, induce IL-10 expression in LCMV specific CD4 T cells, and suppress LCMV-specific T cell proliferation. DCs exposed in vivo to persistent LCMV retain the capacity to stimulate CD4 T cell proliferation but induce IL-10 production by both polyclonal and LCMV-specific CD4 T cells. Our study delineates the unique effects of direct infection versus viral exposure on DCs. Collectively these data point to enhanced infection of DCs as a key trigger of the IL-10 induction cascade resulting in maintenance of elevated IL-10 expression in CD4 T cells and inhibition of LCMV-specific CD4 and CD8 T cell proliferation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/virologia , Interleucina-10/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Doença Crônica , Células Clonais , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Camundongos , Baço/patologia , Baço/virologia
5.
PLoS One ; 8(10): e78483, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205242

RESUMO

Type-1 diabetes (T1D) is an autoimmune disease targeting insulin-producing beta cells, resulting in dependence on exogenous insulin. To date, significant efforts have been invested to develop immune-modulatory therapies for T1D treatment. Previously, IL-2 immunotherapy was demonstrated to prevent and reverse T1D at onset in the non-obese diabetic (NOD) mouse model, revealing potential as a therapy in early disease stage in humans. In the NOD model, IL-2 deficiency contributes to a loss of regulatory T cell function. This deficiency can be augmented with IL-2 or antibody bound to IL-2 (Ab/IL-2) therapy, resulting in regulatory T cell expansion and potentiation. However, an understanding of the mechanism by which reconstituted regulatory T cell function allows for reversal of diabetes after onset is not clearly understood. Here, we describe that Ab/IL-2 immunotherapy treatment, given at the time of diabetes onset in NOD mice, not only correlated with reversal of diabetes and expansion of Treg cells, but also demonstrated the ability to significantly increase beta cell proliferation. Proliferation appeared specific to Ab/IL-2 immunotherapy, as anti-CD3 therapy did not have a similar effect. Furthermore, to assess the effect of Ab/IL-2 immunotherapy well after the development of diabetes, we tested the effect of delaying treatment for 4 weeks after diabetes onset, when beta cells were virtually absent. At this late stage after diabetes onset, Ab/IL-2 treatment was not sufficient to reverse hyperglycemia. However, it did promote survival in the absence of exogenous insulin. Proliferation of beta cells could not account for this improvement as few beta cells remained. Rather, abnormal insulin and glucagon dual-expressing cells were the only insulin-expressing cells observed in islets from mice with established disease. Thus, these data suggest that in diabetic NOD mice, beta cells have an innate capacity for regeneration both early and late in disease, which is revealed through IL-2 immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/imunologia , Interleucina-2/imunologia , Animais , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Feminino , Glucagon/metabolismo , Imunoterapia/métodos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Regeneração/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
6.
J Am Chem Soc ; 135(5): 1669-72, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23330637

RESUMO

The identification of factors that promote ß cell proliferation could ultimately move type 1 diabetes treatment away from insulin injection therapy and toward a cure. We have performed high-throughput, cell-based screens using rodent ß cell lines to identify molecules that induce proliferation of ß cells. Herein we report the discovery and characterization of WS6, a novel small molecule that promotes ß cell proliferation in rodent and human primary islets. In the RIP-DTA mouse model of ß cell ablation, WS6 normalized blood glucose and induced concomitant increases in ß cell proliferation and ß cell number. Affinity pulldown and kinase profiling studies implicate Erb3 binding protein-1 and the IκB kinase pathway in the mechanism of action of WS6.


Assuntos
Ensaios de Triagem em Larga Escala , Ilhotas Pancreáticas/efeitos dos fármacos , Ureia/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Ilhotas Pancreáticas/citologia , Camundongos , Estrutura Molecular , Peso Molecular , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
7.
Eur J Immunol ; 41(5): 1399-409, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21469083

RESUMO

Signaling through TLR2 promotes inflammation and modulates CD4(+) CD25(+) Tregs. We assessed mechanistically how this molecule would alter immunoregulation in type 1 diabetes (T1D). We also asked whether TLR2 may be involved in our recent discovery that viral infection can protect from autoimmune diabetes by expanding and invigorating Tregs. Treatment of prediabetic mice with a synthetic TLR2 agonist diminished T1D and increased the number and function of CD4(+) CD25(+) Tregs, also conferring DCs with tolerogenic properties. TLR2 ligation also promoted the expansion of Tregs upon culture with DCs and ameliorated their capacity to prevent the disease. Protection from T1D by lymphocytic choriomeningitis virus (LCMV) infection depended on TLR2. LCMV increased the frequency of CD4(+) CD25(+) Tregs and their production of TGF-ß more significantly in WT than TLR2-deficient mice. Furthermore, LCMV infection in vivo or LCMV-infected DCs in vitro rendered, via TLR2, CD4(+) CD25(+) Tregs capable of diminishing T1D. We identify novel mechanisms by which TLR2 promotes immunoregulation and controls autoimmune diabetes in naïve or infected hosts. This work should help understand T1D etiology and develop novel immune-based therapeutic interventions.


Assuntos
Infecções por Arenaviridae/imunologia , Diabetes Mellitus Tipo 1/imunologia , Linfócitos T Reguladores/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Antígenos CD4/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Citometria de Fluxo , Imunidade Inata , Inflamação/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Estado Pré-Diabético/imunologia , Transdução de Sinais , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Fator de Crescimento Transformador beta/biossíntese
8.
J Immunol ; 184(12): 7100-7, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483769

RESUMO

One of the requirements for efficient vaccination against infection is to achieve the best combination of an adequate adjuvant with the antigenic information to deliver. Although plasmid DNA is a promising tool bearing the unique potential to activate humoral and cellular immunity, an actual challenge is to increase plasmid immunogenicity in human vaccination protocols in which efficacy has proven rather limited. Previous work showed that the bacterial DNA backbone of the plasmid has potent adjuvant properties because it contains CpG motifs that are particular activating nucleotidic sequences. Among TLRs, which are key sensors of microbial products, TLR9 can detect CpG motifs and confer activation of APCs, such as dendritic cells. However, whether the immunogenic properties of plasmid DNA involve TLR9 signaling has not been clearly established. In the current study, we demonstrate that TLR9 determines the effectiveness of vaccination against lethal lymphocytic choriomeningitis virus infection using plasmid DNA in a prime, but not prime-boost, vaccination regimen. Furthermore, we provide evidence that the presence of TLR9 in dendritic cells is necessary for effective and functional priming of virus-specific CD8+ T cells upon plasmid exposure in vitro or single-dose vaccination in vivo. Therefore, at single or low vaccine doses that are often used in human-vaccination protocols, CpG/TLR9 interactions participate in the immunogenicity of plasmid DNA. These results suggest that the TLR9 signaling pathway is involved in the efficacy of plasmid vaccination; therefore, it should remain a focus in the development or amelioration of vaccines to treat infections in humans.


Assuntos
Células Dendríticas/imunologia , Plasmídeos/imunologia , Receptor Toll-Like 9/imunologia , Vacinação/métodos , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Citometria de Fluxo , Imunização Secundária , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/prevenção & controle , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodesoxirribonucleotídeos/imunologia , Transdução de Sinais/imunologia
9.
J Clin Invest ; 119(6): 1515-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19478458

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease that is caused by the destruction of insulin-producing beta cells. Viral infections induce immune responses that can damage beta cells and promote T1D or on the other hand prevent the development of the disease. However, the opposing roles of viral infections in T1D are not understood mechanistically. We report here that viruses that do not inflict damage on beta cells provided protection from T1D by triggering immunoregulatory mechanisms. Infection of prediabetic NOD mice with Coxsackie virus B3 or lymphocytic choriomeningitis virus (LCMV) delayed diabetes onset and reduced disease incidence. Delayed T1D onset was due to transient upregulation of programmed cell death-1 ligand 1 (PD-L1) on lymphoid cells, which prevented the expansion of diabetogenic CD8+ T cells expressing programmed cell death-1 (PD-1). Reduced T1D incidence was caused by increased numbers of invigorated CD4+CD25+ Tregs, which produced TGF-beta and maintained long-term tolerance. Full protection from T1D resulted from synergy between PD-L1 and CD4+CD25+ Tregs. Our results provide what we believe to be novel mechanistic insight into the role of viruses in T1D and should be valuable for prospective studies in humans.


Assuntos
Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/prevenção & controle , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Doença Aguda , Animais , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-H1 , Linfócitos T CD8-Positivos/imunologia , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/metabolismo , Infecções por Citomegalovirus/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Interferon-alfa/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Peptídeos/imunologia , Peptídeos/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/imunologia , Regulação para Cima
11.
Diabetes ; 57(10): 2684-92, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689691

RESUMO

OBJECTIVE: Transforming growth factor-beta (TGF-beta) can exhibit strong immune suppression but has also been shown to promote T-cell growth. We investigated the differential effect of this cytokine on CD8(+) T-cells in autoimmunity and antiviral immunity. RESEARCH DESIGN AND METHODS: We used mouse models for virally induced type 1 diabetes in conjunction with transgenic systems enabling manipulation of TGF-beta expression or signaling in vivo. RESULTS: Surprisingly, when expressed selectively in the pancreas, TGF-beta reduced apoptosis of differentiated autoreactive CD8(+) T-cells, favoring their expansion and infiltration of the islets. These results pointed to drastically opposite roles of TGF-beta on naïve compared with antigen-experienced/memory CD8(+) T-cells. Indeed, in the absence of functional TGF-beta signaling in T-cells, fast-onset type 1 diabetes caused by activation of naïve CD8(+) T-cells occurred faster, whereas slow-onset disease depending on accumulation and activation of antigen-experienced/memory CD8(+) T-cells was decreased. TGF-beta receptor-deficient CD8(+) T-cells showed enhanced activation and expansion after lymphocytic choriomeningitis virus infection in vivo but were more prone to apoptosis once antigen experienced and failed to survive as functional memory cells. In vitro, TGF-beta suppressed naïve CD8(+) T-cell activation and gamma-interferon production, whereas memory CD8(+) T-cells stimulated in the presence of TGF-beta showed enhanced survival and increased production of interleukin-17 in conjunction with gamma-interferon. CONCLUSIONS: The effect of TGF-beta on CD8(+) T-cells is dependent on their differentiation status and activation history. These results highlight a novel aspect of the pleiotropic nature of TGF-beta and have implications for the design of immune therapies involving this cytokine.


Assuntos
Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Animais , Apoptose/imunologia , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Citometria de Fluxo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/metabolismo
12.
Immunity ; 27(2): 183-5, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17723211

RESUMO

Under what context do dying beta-cells enhance the autoimmune process in type 1 diabetes? Kim et al. (2007) find that secondary necrosis of beta-cells can prime the autoimmune response via uptake by and activation of antigen-presenting cells through Toll-like receptor 2.


Assuntos
Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Receptor 2 Toll-Like/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Apoptose , Células Secretoras de Insulina/imunologia , Camundongos , Necrose
13.
Expert Rev Endocrinol Metab ; 2(2): 185-194, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30754177

RESUMO

Type 1 diabetes results from autoimmune destruction of insulin-producing ß cells in the pancreatic islets, leading to deficiency in glucose uptake by the cells of the body. The resulting complications and mortality call into attention the need for therapeutic strategies to treat this disease. While general immunosuppressive treatment and antigen-based therapy have both proven effective in aborting the autoimmune attack on ß cells, cellular therapy and synergistic combination of agents probably represent the most promising approaches for efficient targeting of autoreactive cells. The underlying challenge is fine tuning of immune therapy to avoid harmful side effects on the immune system or other host-defense functions. This should be rendered possible by identifying the optimal regimen and underlying mechanisms of action.

14.
J Exp Med ; 203(11): 2461-72, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17030951

RESUMO

A defining characteristic of persistent viral infections is the loss and functional inactivation of antiviral effector T cells, which prevents viral clearance. Interleukin-10 (IL-10) suppresses cellular immune responses by modulating the function of T cells and antigen-presenting cells. In this paper, we report that IL-10 production is drastically increased in mice persistently infected with lymphocytic choriomeningitis virus. In vivo blockade of the IL-10 receptor (IL-10R) with a neutralizing antibody resulted in rapid resolution of the persistent infection. IL-10 secretion was diminished and interferon gamma production by antiviral CD8+ T cells was enhanced. In persistently infected mice, CD8alpha+ dendritic cell (DC) numbers declined early after infection, whereas CD8alpha- DC numbers were not affected. CD8alpha- DCs supported IL-10 production and subsequent dampening of antiviral T cell responses. Therapeutic IL-10R blockade broke the cycle of IL-10-mediated immune suppression, preventing IL-10 priming by CD8alpha- DCs and enhancing antiviral responses and thereby resolving infection without causing immunopathology.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/terapia , Vírus da Coriomeningite Linfocítica , Receptores de Interleucina-10/antagonistas & inibidores , Receptores de Interleucina-10/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Doença Crônica , Soros Imunes/administração & dosagem , Interleucina-10/antagonistas & inibidores , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-10/metabolismo , Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptores de Interleucina-10/biossíntese
15.
Int Rev Immunol ; 24(5-6): 341-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16318986

RESUMO

Since their discovery decades ago, regulatory T (Treg) cells have prompted many investigations into their potential role in the generation or prevention of autoimmune disorders such as type 1 diabetes (T1D). Initially identified based on their ability to maintain tolerance to self-antigens in peripheral organs, Treg cells have since been efficiently induced therapeutically and shown to prevent the progression of T1D as well as other autoimmune diseases. Beneficial modification of immunity through the induction of Treg cells has been successfully achieved by antigen-based therapy as well as non-antigen-specific (systemic) treatments. In the current article, we review different strategies that have proved effective in preventing autoimmune diabetes and analyze them with respect to translation into clinical applications. Current evidence indicates that antigen-specific induction of potent regulatory mechanisms is influenced by the systemic milieu, suggesting that systemic modulation might be an essential prerequisite for antigen-based therapy and the successful maintenance or reestablishment of tolerance.


Assuntos
Autoantígenos/imunologia , Diabetes Mellitus Tipo 1/terapia , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Ensaios Clínicos como Assunto , Citocinas/imunologia , Citocinas/uso terapêutico , Diabetes Mellitus Tipo 1/imunologia , Humanos , Terapia de Imunossupressão/métodos , Receptores de Interleucina-2/imunologia
16.
Cell Immunol ; 233(2): 125-32, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15963965

RESUMO

Despite a large body of evidence describing associations between viruses and the development of type 1 diabetes (T1D) in genetically prone individuals, clearly defining causative infectious agents has not been successful. A likely explanation is that the link between infections and autoimmunity is more multifaceted than we initially assumed. Viral footprints might be hard to detect systemically or in the target organ once autoimmunity has been initiated, and several infections might have to act in concert to precipitate clinical autoimmunity. Furthermore, cells cross-reactive between viral and self-antigens might express low avidity T cell receptors and only be present transiently in the blood of affected individuals. In addition, there are two new observations from animal models that we should take into account at this point: first, viral infections alone might not be able to induce disease in the absence of other inflammatory factors (supporting the "fertile field hypothesis" [M.G. von Herrath et al., Microorganisms and autoimmunity: making the barren field fertile? Nat. Rev. Microbiol. 1 (2003) 151-157, ]). Second, increasing evidence indicates that viruses can play a role in preventing rather than enhancing T1D development (supporting the "hygiene hypothesis" [J.F. Bach, Protective role of infections and vaccinations on autoimmune diseases. J. Autoimmun. 16 (2001) 347-353]). In this article we will present an overview of the early events and requirements that could account for T1D predisposition and development, and explain how these can be modulated by viral infections. Focusing on coxsackie B and lymphocytic choriomeningitis virus infections, we will discuss new data that can hopefully help us understand how virus-induced inflammation can positively or negatively affect the clinical outcome of islet-autoimmunity and T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/virologia , Viroses/imunologia , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Humanos , Viroses/virologia
17.
J Exp Med ; 198(2): 201-9, 2003 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12860929

RESUMO

Resistance and susceptibility to Leishmania major in mice are determined by multiple genes and correlate with the preferential development of Th1 and Th2 responses, respectively. Here, we found that CD11b+ dendritic cells (DCs) prime parasite-specific CD4+ T cells in both susceptible BALB/c (H2-d) and resistant B10.D2 (H2-d) mice. However, BALB/c and B10.D2 DCs from L. major-infected mice differ in their ability to polarize naive T cells into Th1 or Th2 effector cells. This difference is cell-intrinsic, is not restricted to H2-d mice, and is observed with both parasite-specific and allospecific CD4+ T cells. Thus, strain-specific differences within CD11b+ DCs influence the ability of inbred mice to mount polarized CD4+ T cell responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Leishmaniose Cutânea/imunologia , Complexo Principal de Histocompatibilidade/genética , Animais , Polaridade Celular , Citocinas/genética , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata , Leishmaniose Cutânea/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , RNA Mensageiro/genética , Especificidade da Espécie , Células Th1/imunologia , Células Th2/imunologia
18.
J Immunol Methods ; 268(1): 83-92, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12213345

RESUMO

For many years, the detection of antigen-specific T cells has relied on indirect in vitro assays such as cytokine secretion, proliferation or chromium release assays. Things have dramatically changed during the past few years, thanks to the imagination of several investigators who have developed very elegant strategies to produce multivalent peptide/MHC complexes. One of these strategies has been to produce peptide-loaded monomeric biotinylated MHC molecules, which could be obtained as tetramers upon incubation with tetravalent streptavidin. Although this latter approach has been by far the most popular, this review focuses on other strategies which have also been successful.


Assuntos
Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/química , Animais , Reagentes de Ligações Cruzadas , Escherichia coli/genética , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Camundongos , Modelos Moleculares , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem , Proteína Estafilocócica A , Linfócitos T/imunologia
19.
Eur J Immunol ; 32(12): 3566-75, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12516542

RESUMO

The interactions between CD28 and its ligand CD86 are critical for the regulation of T cell responses. However, it is not clear whether CD4+ T cells expressing low and high avidity TCR are equally dependent on CD28 costimulation for their activation and expansion. To address this issue, we have used multimers of I-Ad molecules linked to a peptide derived from the Leishmania major homolog for the receptor of activated C kinase (LACK) antigen to compare the fate of LACK-specific CD4+ T cells in Leishmania-infected BALB/c mice which have been treated or not with anti-CD86 mAb. Although the administration of anti-CD86 mAb did not completely prevent the expansion of LACK-specific T cells, their frequency and number were markedly reduced. In mice treated with anti-CD86 mAb as well as in control animals, L. major induced the clonal expansion of LACK-specific T cells which expressed a canonical low avidity Valpha8/Vbeta4 TCR. Taken together, our results suggest that the molecular interactions between CD28 on T cells and CD86 on APC serve to amplify and modulate T cell responses without promoting breadth in the TCR repertoire.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Leishmania major , Leishmaniose Cutânea/imunologia , Glicoproteínas de Membrana/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Antígenos de Protozoários , Antígeno B7-2 , Feminino , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Antígenos de Histocompatibilidade Classe II/metabolismo , Leishmania major/imunologia , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas de Protozoários/imunologia , Receptores de Fator de Crescimento Neural/imunologia , Receptores OX40 , Receptores do Fator de Necrose Tumoral/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...