Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 10(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30966323

RESUMO

Coronary Heart Disease (CHD) is one of the leading causes of death worldwide, claiming over seven million lives each year. Permanent metal stents, the current standard of care for CHD, inhibit arterial vasomotion and induce serious complications such as late stent thrombosis. Bioresorbable vascular scaffolds (BVSs) made from poly l-lactide (PLLA) overcome these complications by supporting the occluded artery for 3⁻6 months and then being completely resorbed in 2⁻3 years, leaving behind a healthy artery. The BVS that recently received clinical approval is, however, relatively thick (~150 µm, approximately twice as thick as metal stents ~80 µm). Thinner scaffolds would facilitate implantation and enable treatment of smaller arteries. The key to a thinner scaffold is careful control of the PLLA microstructure during processing to confer greater strength in a thinner profile. However, the rapid time scales of processing (~1 s) defy prediction due to a lack of structural information. Here, we present a custom-designed instrument that connects the strain-field imposed on PLLA during processing to in situ development of microstructure observed using synchrotron X-ray scattering. The connection between deformation, structure and strength enables processing⁻structure⁻property relationships to guide the design of thinner yet stronger BVSs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...