Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960439

RESUMO

The exploration of the plasmonic field enhancement of nanoprobes consisting of gold and magnetic core@gold shell nanoparticles has found increasing application for the development of surface-enhanced Raman spectroscopy (SERS)-based biosensors. The understanding of factors controlling the electromagnetic field enhancement, as a result of the plasmonic field enhancement of the nanoprobes in SERS biosensing applications, is critical for the design and preparation of the optimal nanoprobes. This report describes findings from theoretical calculations of the electromagnetic field intensity of dimer models of gold and magnetic core@gold shell nanoparticles in immunoassay SERS detection of biomarkers. The electromagnetic field intensities for a series of dimeric nanoprobes with antibody-antigen-antibody binding defined interparticle distances were examined in terms of nanoparticle sizes, core-shell sizes, and interparticle spacing. The results reveal that the electromagnetic field enhancement not only depended on the nanoparticle size and the relative core size and shell thicknesses of the magnetic core@shell nanoparticles but also strongly on the interparticle spacing. Some of the dependencies are also compared with experimental data from SERS detection of selected cancer biomarkers, showing good agreement. The findings have implications for the design and optimization of functional nanoprobes for SERS-based biosensors.


Assuntos
Nanopartículas Metálicas , Biomarcadores , Campos Eletromagnéticos , Ouro , Análise Espectral Raman
2.
Mol Pharm ; 18(7): 2470-2481, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34125542

RESUMO

Recruitment and activation of the ataxia telangiectasia mutated (ATM) kinase regulate multiple cell-cycle checkpoints relevant to complex biological events like DNA damage repair and apoptosis. Molecularly specific readouts of ATM using protein assays, fluorescence, or radiolabeling have advanced significantly over the past few years. This Review covers the molecular imaging techniques that enable the visualization of ATM-from traditional quantitative protein assays to the potential use of ATM inhibitors to generate new imaging agents to interrogate ATM. We are confident that molecular imaging coupled with advanced technologies will play a pivotal role in visualizing and understanding the biology of ATM and accelerate its applications in the diagnosis and monitoring of disease, including radiation therapy and patient stratification.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/diagnóstico , Imagem Molecular/métodos , Inibidores de Proteínas Quinases/farmacologia , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/terapia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...