Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1637: 461805, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33360778

RESUMO

Glucose homeostasis is maintained through the secretion of peptide hormones, such as insulin, somatostatin, and glucagon, from islets of Langerhans, clusters of endocrine cells found in the pancreas. This report describes an LC-MS method using multiple reaction monitoring for quantitation of insulin, C-peptide, glucagon, and somatostatin secretion from human islet populations. For rapid analysis, a 5 min separation was achieved using a 2.1 × 30 mm (i.d. x length) C18 column with 2.7 µm diameter core shell particles. A sacrificial protein hydrolysate was used with the sample and found to improve signal magnitude, repeatability, and to reduce carryover between runs. At optimized gradient conditions, the gradient run time was 4.55 min producing an average peak width of 0.3 min, a minimum resolution of 1.2, and a peak capacity of 20. As a proof of concept, the method was used to measure secretions from static incubations of human islets from 2 donors. Insulin and C-peptide were quantified and matched well with literature values of these hormones. We expect that this antibody-free quantitation of multiple hormones secreted from islets will provide insights into the temporal relationships of these peptides in the future.


Assuntos
Glicemia/metabolismo , Cromatografia Líquida/métodos , Glucagon/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas/métodos , Somatostatina/metabolismo , Humanos , Reprodutibilidade dos Testes
3.
Anal Bioanal Chem ; 411(24): 6399-6407, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31372700

RESUMO

As microfluidic cell culture progresses, the need for robust and reproducible intracellular analyses grows. In particular, intracellular metabolites are subject to perturbation and degradation during the lysing process. The reliability of intracellular metabolomic analysis in microfluidic devices depends on the preservation of metabolite integrity during sample preparation and storage. Described here is a novel automated microfluidic system exhibiting the necessary rapid cellular lysis and quenching of enzymatic activity. Quenching efficiency was assessed using a novel ratiometric MALDI-MS-based assay of exogenous isotopic adenosine triphosphate (ATP) hydrolysis to isotopic adenosine diphosphate (ADP) as a marker of metabolite degradation. The lysis system of the microfluidic device was enhanced using a Peltier cooler to chill the lysate and quench aberrant enzymatic activity. Parameter optimization (flow rate, collection time, and temperature control) improved the endogenous and exogenous ADP/ATP ratios by 44.9% and 39.8% respectively consistent with traditional quenching techniques. The effects of chilling/quenching on metabolism were evaluated resulting in over 500 significant features compared to non-chilled from untargeted capillary LC-MS metabolomic analyses. These include increased levels of tryptophan, histidine, and pyruvate as well as decreased levels in UDP-N-acetylglucosamine. The results illustrate the need for both rapid lysis and quenching in microfluidic cell culture platforms. Graphical abstract.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolômica , Microfluídica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Difosfato de Adenosina/metabolismo , Automação
4.
Anal Chem ; 90(4): 2414-2419, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29356503

RESUMO

A method for multiplexed sample analysis by mass spectrometry without the need for chemical tagging is presented. In this new method, each sample is pulsed at unique frequencies, mixed, and delivered to the mass spectrometer while maintaining a constant total flow rate. Reconstructed ion currents are then a time-dependent signal consisting of the sum of the ion currents from the various samples. Spectral deconvolution of each reconstructed ion current reveals the identity of each sample, encoded by its unique frequency, and its concentration encoded by the peak height in the frequency domain. This technique is different from other approaches that have been described, which have used modulation techniques to increase the signal-to-noise ratio of a single sample. As proof of concept of this new method, two samples containing up to 9 analytes were multiplexed. The linear dynamic range of the calibration curve was increased with extended acquisition times of the experiment and longer oscillation periods of the samples. Because of the combination of the samples, salt had little effect on the ability of this method to achieve relative quantitation. Continued development of this method is expected to allow for increased numbers of samples that can be multiplexed.

5.
Analyst ; 141(12): 3858-65, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27118418

RESUMO

Sample pretreatment in conventional cellular metabolomics entails rigorous lysis and extraction steps which increase the duration as well as limit the consistency of these experiments. We report a biomimetic cell culture microfluidic device (MFD) which is coupled with an automated system for rapid, reproducible cell lysis using a combination of electrical and chemical mechanisms. In-channel microelectrodes were created using facile fabrication methods, enabling the application of electric fields up to 1000 V cm(-1). Using this platform, average lysing times were 7.12 s and 3.03 s for chips with no electric fields and electric fields above 200 V cm(-1), respectively. Overall, the electroporation MFDs yielded a ∼10-fold improvement in lysing time over standard chemical approaches. Detection of multiple intracellular nucleotides and energy metabolites in MFD lysates was demonstrated using two different MS platforms. This work will allow for the integrated culture, automated lysis, and metabolic analysis of cells in an MFD which doubles as a biomimetic model of the vasculature.


Assuntos
Dispositivos Lab-On-A-Chip , Metabolômica/métodos , Técnicas Analíticas Microfluídicas , Animais , Bovinos , Células Cultivadas , Eletroporação , Microeletrodos , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...