Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542250

RESUMO

Onboard oxygen-generating systems (OBOGSs) provide increased inspired oxygen (FiO2) to mitigate the risk of neurologic injury in high altitude aviators. OBOGSs can deliver highly variable oxygen concentrations oscillating around a predetermined FiO2 set point, even when the aircraft cabin altitude is relatively stable. Steady-state exposure to 100% FiO2 evokes neurovascular vasoconstriction, diminished cerebral perfusion, and altered electroencephalographic activity. Whether non-steady-state FiO2 exposure leads to similar outcomes is unknown. This study characterized the physiologic responses to steady-state and non-steady-state FiO2 during normobaric and hypobaric environmental pressures emulating cockpit pressures within tactical aircraft. The participants received an indwelling radial arterial catheter while exposed to steady-state or non-steady-state FiO2 levels oscillating ± 15% of prescribed set points in a hypobaric chamber. Steady-state exposure to 21% FiO2 during normobaria produced arterial blood gas values within the anticipated ranges. Exposure to non-steady-state FiO2 led to PaO2 levels higher upon cessation of non-steady-state FiO2 than when measured during steady-state exposure. This pattern was consistent across all FiO2 ranges, at each barometric condition. Prefrontal cortical activation during cognitive testing was lower following exposure to non-steady-state FiO2 >50% and <100% during both normobaria and hypobaria of 494 mmHg. The serum analyte levels (IL-6, IP-10, MCP-1, MDC, IL-15, and VEGF-D) increased 48 h following the exposures. We found non-steady-state FiO2 levels >50% reduced prefrontal cortical brain activation during the cognitive challenge, consistent with an evoked pattern of neurovascular constriction and dilation.


Assuntos
Citocinas , Oxigênio , Humanos , Gasometria , Altitude , Córtex Pré-Frontal
2.
Aerosp Med Hum Perform ; 93(6): 493-498, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35729762

RESUMO

BACKGROUND: Tactical aviators require administration of enhanced inspired oxygen concentrations (hyperoxia) to reduce risk of hypobaric hypoxia and decompression injuries. Hyperoxia is not without consequence; it reduces cerebral perfusion (CBF). Characterizing the relationship between FIO2 and CBF is necessary to establish FIO2 levels that do not reduce CBF yet are sufficient to mitigate risk of in-flight physiological stressors. To achieve that goal, this study's objective was to determine whether a dose-response relationship exists between FIO2 and CBF and, if so, the FIO2 at which CBF significantly declines.METHODS: Healthy male and female subjects (N = 26) were randomized to receive either low dose FIO2 of 30%, 40%, 50%, and 100% (Arm 1) or high dose FIO2 of 60%, 70%, 80%, and 100% (Arm 2), followed by a return to 21% for both groups. Subjects were placed within a 3-Tesla MRI scanner equipped with pseudocontinuous arterial spin labeling software (pCASL) to measure CBF. Baseline CBF measurements were obtained during exposure to 21% FIO2, with subsequent CBF measurements obtained at each predetermined FIO2 level.RESULTS: Baseline CBF did not differ between subjects in Arm 1 and Arm 2. Low dose FIO2 ≤ 50% did not affect CBF. In contrast, high dose FIO2 ≥ 60% significantly reduced CBF. Exposure to 100% FIO2 led to similar reductions of CBF for subjects in both Arm 1 and Arm 2.DISCUSSION: The neurovascular system appears to respond to increasing FIO2 levels in a dose dependent manner, with significant reductions in CBF with FIO2 exposures ≥ 60%.Damato EG, Fillioe SJ, Vannix IS, Norton LK, Margevicius SP, Beebe JL, Decker MJ. Characterizing the dose response of hyperoxia with brain perfusion. Aerosp Med Hum Perform. 2022; 93(6):493-498.


Assuntos
Hiperóxia , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Perfusão , Marcadores de Spin
3.
Front Physiol ; 13: 876750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574470

RESUMO

Tactical aviation imposes unprecedented physical challenges including repetitive exposure to hypergravity, hyperoxia, increased work of breathing, and profound cognitive workloads. Each stressor evokes outcomes ranging from musculoskeletal duress and atelectasis to physical and cognitive fatigue, the latter among the foremost threats to aviators. Whereas sleep loss is traditionally considered the primary cause of fatigue in aviators, converging experimental, observational, and medical studies have identified biochemical mechanisms promoting onset of fatigue. Those mechanisms, which fundamentally differ from sleep loss, revolve around increased proinflammatory cytokines, produced and released in response to tissue injury, chronic inflammatory disorders, allergens, or physical duress. This study's objective was to inform our understanding of potential relationships between serum levels of proinflammatory cytokines and onset of fatigue within a cohort of aviators who experience multiple high-performance sorties on a daily basis. Methods: Active duty and reservist T-6A Texan II instructor pilots were studied on three separate days across their week-long flying schedule. Data collected included a physical assessment, subjective fatigue levels, venous blood samples for measures of chemistry and serum analytes, and urine samples for specific gravity. Results: Twenty-three persons were studied, of which 22 fulfilled minimum study requirements of completing two sorties. The study cohort was comprised of primarily males, age 37.95 ± 4.73 years with a BMI of 26.63 ± 3.15 kg/m2. Of 37 measurable serum analytes, 20 differed significantly (p < 0.05) between baseline values with those measured at the study endpoint. Thirteen of the aviators reported increased fatigue scores across their flying schedule whereas nine did not. Eleven blood serum analytes were associated with increasing levels of fatigue. Discussion: Fatigue in aviators has been attributed almost solely to sleep loss, nocturnal sorties, or disrupted circadian rhythmicity. In contrast, our study findings suggest an alternative mechanism that can promote onset of fatigue: increased blood levels of proinflammatory cytokines. Specific mechanisms triggering synthesis and release of those cytokines and other analytes are yet to be determined. However, their expression patterns suggest responses to both chronic and acute inflammation, hyperoxia, or bronchopulmonary responses to inspiration of dry gas, positive airway pressure, or perhaps atelectasis.

4.
Mil Med ; 186(Suppl 1): 458-464, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33499477

RESUMO

INTRODUCTION: Measures of normal and abnormal physiology are interrelated and vary continuously. Our ability to detect and predict changes in physiology in real time has been limited in part by the requirement for blood sampling and the lack of a continuous data stream of various "signals", i.e., measurements of vital signs. It is important to determine which signals are most revealing for detection and treatment of, e.g., internal bleeding, managing fluid balance for mission/combat readiness, and hydration. Although our current algorithm for PV[O]H reflects changes in hematocrit and blood and plasma volumes, additional algorithms utilizing the whole raw PV[O]H data stream, along with other variables, can be constructed. We present a working prototype demonstrating that acceptable size, power, and complexity footprints for military needs can be achieved. Results of previous studies involving humans have demonstrated that PV[O]H can provide simultaneous, noninvasive, in vivo continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate, and breathing rate using a single light source with a reporting frequency of every 3 seconds. MATERIALS AND METHODS: We have engineered an instrument implementing the PV[O]H algorithm in which (1) single channel photodetectors replace multichannel detection; (2) optical filters replace gratings; (3) battery power is used; and (4) sufficient computation with input/output capability moderated by application specific graphical user interfaces, and compatible with all cloud, wireless environment, and local protocols is implemented. RESULTS: We have engineered a complete version of a two-probe PV[O]H system meeting military needs and have fabricated a first version. Testing of subsystems, calibration, and optical characterization of the optical probes are underway. CONCLUSIONS: Simultaneous noninvasive continuous monitoring of peripheral vessels using a previous PV[O]H system demonstrates large, physiology revealing data sets. The technologies enable the methodical search for relevant physiological signals allowing the use of discriminant analysis, Bayesian approaches, and artificial intelligence to create predictive algorithms enabling timely interventions in medical care and troop training.


Assuntos
Inteligência Artificial , Big Data , Teorema de Bayes , Humanos , Monitorização Fisiológica , Tecnologia
5.
J Biomed Opt ; 25(3): 1-12, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31654506

RESUMO

We report a small exploratory study of a methodology for real-time imaging of chemical and physical changes in spinal cords in the immediate aftermath of a localized contusive injury. One hundred separate experiments involving scanning NIR images, one-dimensional, two-dimensional (2-D), and point measurements, obtained in vivo, within a 3 × 7 mm field, on spinal cords surgically exposed between T9 and T10 revealed differences between injured and healthy cords. The collected raw data, i.e., elastic and inelastic emission from the laser probed tissues, combined via the PV[O]H algorithm, allow construction of five images over the first 5 h post injury. Within the larger study, a total of 13 rats were studied using 2-D images, i.e., injured and control. A single 830-nm laser (100-µm diameter round spot) was spatially line-scanned across the cord to reveal photobleaching effects and surface profiles possibly locating a near surface longitudinal artery/vein. In separate experiments, the laser was scanned in two dimensions across the exposed cord surface relative to the injury in a specific pattern to avoid uneven photobleaching of the imaged tissue. The 2-D scanning produced elastic and inelastic emission that allowed construction of PV[O]H images that had good fidelity with the visually observed surfaces and separate line scans and suggested differences between the volume fractions of fluid and turbidity of injured and healthy cord tissue.


Assuntos
Sistemas Computacionais , Diagnóstico por Imagem/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Algoritmos , Animais , Volume Sanguíneo/fisiologia , Feminino , Interpretação de Imagem Assistida por Computador , Raios Infravermelhos , Modelos Animais , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...