Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171795, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508269

RESUMO

Water resource recovery facilities (WRRFs) performing biological nitrogen removal (BNR) often require external carbon sources for meeting nitrogen discharge permit limits. This brings an additional financial burden to the facilities considering the continuous need of these external carbon sources. This paper evaluates the utilization of airport stormwater, which in the winter season is rich in aircraft deicing fluid (ADF) as an alternative external carbon source. Denitrification and nitrification bench scale experiments were performed to assess the efficacy of external carbon sources to remove nitrogen in WRRFs. Experimental results showed that ADFs achieve denitrification rates of 0.064-0.066 d-1, higher than what achieved by a commercial carbon source, MicroC 2000A, with corresponding value of 0.058 d-1 at low temperatures, as low as 13 °C, which is considered a worst-case scenario for nitrogen removal efficiency. Furthermore, no inhibition to nitrification associated with the ADFs was observed. Subsequently a dynamic modeling study was conducted to assess the performance of ADFs as external carbon sources for denitrification and compared them to the conventional source that was being used in a full-scale BNR process. Results from the dynamic modeling study revealed that if 40 % of the spent-ADF at LaGuardia airport, New York City, could be collected with the stormwater and conveyed to a WRRF via the sewer collection system, an approximate reduction of 30 % of the commercial external carbon source could be accomplished by repurposing a waste product. This study contributes to the potential of ADF as a denitrification aid and an alternative for commercially available carbon sources with comparable nitrogen removal efficiencies.

2.
Water Res ; 44(17): 5005-13, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20684970

RESUMO

The composition of distinctly inoculated granular anammox and biofilm-based completely autotrophic nitrogen removal over nitrite (CANON) bioreactors was investigated from start-up through continuous long-term operation via denaturing gradient gel electrophoresis (DGGE) and sequencing. The granular anammox reactor was seeded with sludge from an operational anammox reactor in Strass, Austria. The CANON reactor was seeded with activated sludge from a local wastewater treatment plant in New York City. The principal anammox bacteria (AMX) shifted from members related to Kuenenia stuttgartiensis present in the initial inoculum to members related to Candidatus Brocadia fulgida during pre-enrichment (before this study) and to members related to Candidatus Brocadia sp. 40 (during this study) in the granular reactor. AMX related to C. Brocadia sp. 40 were also enriched from activated sludge in the CANON reactor. The estimated doubling times of AMX in the granular and CANON reactors were 5.3 and 8.9 days, respectively, which are lower than the value of 11 days, reported previously. Both the granular anammox and CANON reactors also fostered significant amounts of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). The fractions of AMX and two groups of NOB were generally similar in the granular anammox and CANON reactors. However, the diversity and fractions of AOB in the two reactors was markedly different. Therefore, it is suggested that the composition of the feed and extant substrate concentrations in the reactor likely select for the microbial community composition more than the inocula and reactor configuration. Further, such selection is not equivalent for all resident communities.


Assuntos
Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Reatores Biológicos/microbiologia , Fenômenos Ecológicos e Ambientais , Anaerobiose , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Nitritos/isolamento & purificação , Nitrogênio/isolamento & purificação , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
3.
Environ Sci Technol ; 44(16): 6110-6, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704206

RESUMO

Anaerobic ammonium oxidation (anammox) requires 60% less oxygen and no external organic carbon compared to conventional biological nitrogen removal (BNR). Nevertheless, full-scale installations of anammox are uncommon, primarily owing to the lack of well-established process monitoring and control strategies that result in stable anammox reactor performance. The overarching goal of this study was to develop and apply molecular biomarkers that link microbial community structure and activity to anammox process performance in a bioreactor fed with actual anaerobic digestion centrate from a full-scale operational wastewater treatment facility. Over long-term operation, Candidatus "Brocadia sp. 40" emerged as the dominant anammox population present in the reactor. There was good correspondence between reactor nitrogen removal performance and anammox bacterial concentrations. During the period of reactor operation, there was also a marked shift in biomass morphology from discrete cells to granular aggregates, which was paralleled by a shift also to more stable nitrogen removal and the succession and establishment of bacteria related to the Chlorobi/Bacteroidetes superfamily. Based on batch assays, hydrazine oxidoreductase (hzo) expression and concentrations of the 16S-23S rRNA intergenic spacer region (ISR) were good quantitative biomarkers of oxygen- and nitrite-mediated inhibition. When applied to a continuous anammox reactor, both molecular biomarkers show promise as monitoring tools for "predicting" reactor performance.


Assuntos
Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Reatores Biológicos/microbiologia , Regulação Bacteriana da Expressão Gênica , Nitrogênio/isolamento & purificação , Purificação da Água , Anaerobiose , Biodegradação Ambiental , Biomassa , Cidades , Eletroforese em Gel de Ágar , Hidrazinas/análise , Hidroxilamina/análise , Nitritos/análise , Oxirredução , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...