Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 38(2): 992-1004, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18642378

RESUMO

This study examined the effects of pulsed shortwave diathermy on intramuscular temperature, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis. Thirty-five men were assigned to diathermy (n = 13), sham-diathermy (n = 12), or control (n = 10) groups. Each subject performed isometric maximal voluntary contractions (MVCs) and incremental ramp contractions (10%-90% MVC) before and after treatment. Torque, intramuscular temperature, EMG, and MMG were recorded. Temperature for the diathermy group increased (P

Assuntos
Temperatura Corporal/efeitos da radiação , Diatermia/métodos , Eletromiografia , Músculo Esquelético/fisiologia , Músculo Esquelético/efeitos da radiação , Adolescente , Adulto , Análise de Variância , Fenômenos Biomecânicos , Estimulação Elétrica/métodos , Humanos , Masculino , Contração Muscular/fisiologia , Contração Muscular/efeitos da radiação , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Estresse Mecânico
2.
J Athl Train ; 41(3): 314-20, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17043700

RESUMO

CONTEXT: Isokinetic and isotonic resistance training exercises are commonly used to increase strength during musculoskeletal rehabilitation programs. Our study was designed to examine the efficacy of isokinetic and isotonic muscle actions using surface electromyographic (EMG) amplitude-to-work ratios (EMG/WK) and to extend previous findings to include a range of isokinetic velocities and isotonic loads. OBJECTIVE: To examine work (WK), surface EMG amplitude, and EMG/WK during concentric-only maximal isokinetic muscle actions at 60, 120, 180, 240, and 300 degrees /s and isotonic muscle actions at 10%, 20%, 30%, 40%, and 50% of the maximal voluntary isometric contraction (MVIC) torque during leg extension exercises. DESIGN: A randomized, counterbalanced, cross-sectional, repeated-measures design. SETTING: A university-based human muscle physiology research laboratory. PATIENTS OR OTHER PARTICIPANTS: Ten women (mean age = 22.0 +/- 2.6 years) and 10 men (mean age = 20.8 +/- 1.7 years) who were apparently healthy and recreationally active. INTERVENTION(S): Using the dominant leg, each participant performed 5 maximal voluntary concentric isokinetic leg extension exercises at randomly ordered angular velocities of 60, 120, 180, 240, and 300 degrees /s and 5 concentric isotonic leg extension exercises at randomly ordered loads of 10%, 20%, 30%, 40%, and 50% of the isometric MVIC. MAIN OUTCOME MEASURE(S): Work was recorded by a Biodex System 3 dynamometer, and surface EMG was recorded from the superficial quadriceps femoris muscles (vastus lateralis, rectus femoris, and vastus medialis) during the testing and was normalized to the MVIC. The EMG/WK ratios were calculated as the quotient of EMG amplitude (muVrms) and WK (J) during the concentric phase of each exercise. RESULTS: Isotonic EMG/WK remained unchanged ( P > .05) from 10% to 50% MVIC, but isokinetic EMG/WK increased ( P < .05) from 60 to 300 degrees /s. Isotonic EMG/WK was greater ( P < .05) than isokinetic EMG/WK for 50% MVIC versus 60 degrees /s, 40% MVIC versus 120 degrees /s, and 30% MVIC versus 180 degrees /s; however, no differences were noted ( P > .05) between 20% MVIC versus 240 degrees /s or 10% MVIC versus 300 degrees /s. An 18% decrease in active range of motion was seen for the isotonic muscle actions, from 10% to 50% MVIC, and a 3% increase in range of motion for the isokinetic muscle actions from 60 to 300 degrees /s was also observed. Furthermore, the peak angular velocities for the isotonic muscle actions ranged from 272.9 to 483.0 degrees /s for 50% and 10% MVIC, respectively. CONCLUSIONS: When considering EMG/WK, peak angular velocity, and range of motion together, our data indicate that maximal isokinetic muscle actions at 240 degrees /s or controlled-velocity isotonic muscle actions at 10%, 20%, or 30% MVIC may maximize the amount of muscle activation per unit of WK done during the early stages of musculoskeletal rehabilitation. These results may be useful to allied health professionals who incorporate open-chain resistance training exercises during the early phases of rehabilitation and researchers who use isotonic or isokinetic modes of resistance exercise to examine muscle function.

3.
J Athl Train ; 40(2): 94-103, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15970955

RESUMO

Context: Stretching is commonly used as a technique for injury prevention in the clinical setting. Our findings may improve the understanding of the neuromuscular responses to stretching and help clinicians make decisions for rehabilitation progression and return to play.Objective: To examine the short-term effects of static and proprioceptive neuromuscular facilitation stretching on peak torque (PT), mean power output (MP), active range of motion (AROM), passive range of motion (PROM), electromyographic (EMG) amplitude, and mechanomyographic (MMG) amplitude of the vastus lateralis and rectus femoris muscles during voluntary maximal concentric isokinetic leg extensions at 60 and 300 degrees .s.Design: A randomized, counterbalanced, cross-sectional, repeated-measures design.Setting: A university human research laboratory.Patients or Other Participants: Ten female (age, 23 +/- 3 years) and 9 male (age, 21 +/- 3 years) apparently healthy and recreationally active volunteers.Intervention(s): Four static or proprioceptive neuromuscular facilitation stretching exercises to stretch the leg extensor muscles of the dominant limb during 2 separate, randomly ordered laboratory visits.Main Outcome Measure(s): The PT and MP were measured at 60 and 300 degrees .s, EMG and MMG signals were recorded, and AROM and PROM were measured at the knee joint before and after the stretching exercises.Results: Static and proprioceptive neuromuscular facilitation stretching reduced PT (P = .051), MP (P = .041), and EMG amplitude (P = .013) from prestretching to poststretching at 60 and 300 degrees .s (P < .05). The AROM (P < .001) and PROM (P = .001) increased as a result of the static and proprioceptive neuromuscular facilitation stretching. The MMG amplitude increased in the rectus femoris muscle in response to the static stretching at 60 degrees .s (P = .031), but no other changes in MMG amplitude were observed (P > .05).Conclusions: Both static and proprioceptive neuromuscular facilitation stretching caused similar deficits in strength, power output, and muscle activation at both slow (60 degrees .s) and fast (300 degrees .s) velocities. The effect sizes, however, corresponding to these stretching-induced changes were small, which suggests the need for practitioners to consider a risk-to-benefit ratio when incorporating static or proprioceptive neuromuscular facilitation stretching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...