Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; : 37028241258111, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881027

RESUMO

Near-infrared (NIR) dyes have a unique ability to interact favorably with light in the NIR region, which is particularly interesting where stealth and camouflage are paramount, such as in military uniforms. Characterization of cotton fabric dyed with NIR-absorbing dyes using visible-NIR (Vis-NIR) and short-wave infrared (SWIR) hyperspectral imaging was done. The aim of the study was to discern spectral changes caused by variations in dye concentration and dyeing temperature as these parameters directly influence color- and crocking-fastness of fabrics impacting the camouflage effect. The fabric was dyed at three concentrations (2.5, 5, and 10%) and two dyeing temperatures (55 °C and 85 °C) and principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed on the spectra to discriminate the fabrics based on dye concentrations. The PCA models successfully segregated the fabrics based on the dye concentration and dyeing temperature, while PLS-DA models demonstrated classification accuracies between 75 and 100% in the Vis-NIR range. Spectra in the SWIR region could not be used to detect the differences in the concentrations of the NIR dyes. This finding is promising, as it aligns with the objective of creating NIR-dyed camouflage fabrics that remain indistinguishable under varying dye concentrations. These results open possibilities for further exploration in enhancing the stealth capabilities of textiles in military applications.

2.
Foods ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254532

RESUMO

As the demand for alternative protein sources and nutritional improvement in baked goods grows, integrating legume-based ingredients, such as fava beans, into wheat flour presents an innovative alternative. This study investigates the potential of hyperspectral imaging (HSI) to predict the protein content (short-wave infrared (SWIR) range)) of fava bean-fortified bread and classify them based on their color characteristics (visible-near-infrared (Vis-NIR) range). Different multivariate analysis tools, such as principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and partial least square regression (PLSR), were utilized to assess the protein distribution and color quality parameters of bread samples. The result of the PLS-DA in the SWIR range yielded a classification accuracy of ˃99%, successfully classifying the samples based on their protein contents (low protein and high protein). The PLSR model showed an RMSEC of 0.086% and an RMSECV of 0.094%. Also, the external validation resulted in an RMSEP of 0.064%. The PLSR model possessed the capability to efficiently predict the protein content of the bread samples. The results suggest that HSI can be successfully used to classify bread samples based on their protein content and for the prediction of protein composition. Hyperspectral imaging can therefore be reliably implemented for the quality monitoring of baked goods in commercial bakeries.

3.
Food Bioproc Tech ; : 1-12, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37363378

RESUMO

The metabolic actions of storage fungi and other microorganisms can cause spoilage and post-harvest losses in agricultural commodities, including flaxseed. These microbial contaminants are oxidized with hydroxyl radicals that are efficiently generated when ozone, hydrogen peroxide (H2O2) and ultraviolet (UV) light react in an advanced oxidative process (AOP). The present work explores what we believe is the first application of an AOP technology to reduce mould on whole brown and yellow flaxseed. The impact of AOP on storage and quality parameters was assessed by measuring the fatty acid value (FAV), germination rate, moisture content (MC) and visible mould growth after 12 weeks of storage at 30°C and 75% relative humidity (RH). Under these conditions, the yellow decontaminated flaxseed showed a 31% decrease in the number of seeds with visible mould without any adverse effect on germination rate, FAV and MC. In contrast, the same AOP treatment created an insignificant decrease in mould in stored brown flaxseed, at the cost of decreasing the germination rate and increasing FAV. The adverse effects of AOP on brown flaxseed were not readily apparent but became measurable after storage. Moreover, Fourier transform infrared (FTIR) spectroscopy was utilized to explore the rationale behind the different reactions of flaxseed varieties to AOP. The corresponding results indicated that the tolerance of yellow flaxseed to AOP might be related to its richness in olefins. The authors believe that technologies that harness advanced oxidative processes open new horizons in decontamination beyond ozone alone and towards increasing the shelf life of various agri-food products.

4.
Compr Rev Food Sci Food Saf ; 22(3): 1613-1632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880584

RESUMO

The consumption of plant-based proteins sourced from pulses is sustainable from the perspective of agriculture, environment, food security, and nutrition. Increased incorporation of high-quality pulse ingredients into foods such as pasta and baked goods is poised to produce refined food products to satisfy consumer demand. However, a better understanding of pulse milling processes is required to optimize the blending of pulse flours with wheat flour and other traditional ingredients. A thorough review of the state-of-the-art on pulse flour quality characterization reveals that research is required to elucidate the relationships between the micro- and nanoscale structures of these flours and their milling-dependent properties, such as hydration, starch and protein quality, components separation, and particle size distribution. With advances in synchrotron-enabled material characterization techniques, there exist a few options that have the potential to fill knowledge gaps. To this end, we conducted a comprehensive review of four high-resolution nondestructive techniques (i.e., scanning electron microscopy, synchrotron X-ray microtomography, synchrotron small-angle X-ray scattering, and Fourier-transformed infrared spectromicroscopy) and a comparison of their suitability for characterizing pulse flours. Our detailed synthesis of the literature concludes that a multimodal approach to fully characterize pulse flours will be vital to predicting their end-use suitability. A holistic characterization will help optimize and standardize the milling methods, pretreatments, and post-processing of pulse flours. Millers/processors will benefit by having a range of well-understood pulse flour fractions to incorporate into food formulations.


Assuntos
Farinha , Manipulação de Alimentos , Farinha/análise , Manipulação de Alimentos/métodos , Triticum , Amido , Proteínas de Plantas
5.
Analyst ; 144(3): 928-934, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30412213

RESUMO

With lethal opportunistic fungal infections on the rise, it is imperative to explore new methods to examine virulence mechanisms. The fungal cell wall is crucial for both the virulence and viability of Aspergillus nidulans. One wall component, Galf, has been shown to contribute to important fungal processes, integrity of the cell wall and pathogenesis. Here, we explore gene deletion strains lacking the penultimate enzyme in Galf biosynthesis (ugmAΔ) and the protein that transports Galf for incorporation into the cell wall (ugtAΔ). In applying gene deletion technology to the problem of cell wall integrity, we have employed multiple micro- and nano-scale imaging tools, including confocal fluorescence microscopy, electron microscopy, X-Ray fluorescence and atomic force microscopy. Atomic force microscopy allows quantification of ultrastructural cell wall architecture while near-field infrared spectroscopy provides spatially resolved chemical signatures, both at the nanoscale. Here, for the first time, we demonstrate correlative data collection with these two emerging modalities for the multiplexed in situ study of the nanoscale architecture and chemical composition of fungal cell walls.


Assuntos
Aspergillus nidulans/ultraestrutura , Parede Celular/ultraestrutura , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Nanotecnologia/métodos , Espectrofotometria Infravermelho/métodos , Síncrotrons , Aspergillus nidulans/metabolismo , Parede Celular/metabolismo , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodos
6.
Analyst ; 142(4): 660-669, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28133664

RESUMO

We have used thermal source Fourier Transform Infrared (FTIR) microtomographic imaging to compare sea ice diatoms growing under different light conditions. A prototype tomography accessory was designed to have sufficient degrees of freedom to align any tilted cylindrical sample relative to the axis of rotation, minimizing the off-axis path traced during rotation. The lightweight device rests on the motorized stage to position the sample in the field-of-view and enable mosaic imaging. Reconstruction routines were tested with simulated and real phantoms, to assess limitations in the Radon back-projection method employed. The distribution and abundance of biochemicals is analysed for targets larger than a single FPA tile. Two and three dimensional (2D and 3D) FTIR spectrochemical images were obtained with a Focal Plane Array (FPA, nominal 1.1 µm pixel edges) for phantoms (polystyrene beads in polyvinyl alcohol matrix) and diatom cells harvested from land fast, first-year ice sites in Resolute Passage (74 43.628'N; 95 33.330'W) and Dease Strait (69° 1.11'N; 105° 21.29'W), Nunavut, Canada. The analysis of relative concentrations of organic matter within the encapsulating silica frustules of diatoms is important for a better understanding of both the physiological state and the individual cellular response to environmental pressures. Analysis of 3D FTIR images of Nitzschia frigida collected from beneath high (17-19 cm) and low (3-7 cm) snow depth revealed higher concentrations of lipids in diatoms collected under low snow cover, uniquely based on spectroscopically determined total 3D cell volume and biochemical content.

7.
Faraday Discuss ; 187: 555-73, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27048856

RESUMO

Collagen is a major constituent in many life forms; in mammals, collagen appears as a component of skin, bone, tendon and cartilage, where it performs critical functions. Vibrational spectroscopy methods are excellent for studying the structure and function of collagen-containing tissues, as they provide molecular insight into composition and organization. The latter is particularly important for collagenous materials, given that a key feature is their hierarchical, oriented structure, organized from molecular to macroscopic length scales. Here, we present the first results of high-resolution FTIR polarization contrast imaging, at 1.1 µm and 20 nm scales, on control and mechanically damaged tendon. The spectroscopic data are supported with parallel SEM and correlated AFM imaging. Our goal is to explore the changes induced in tendon after the application of damaging mechanical stress, and the consequences for the healing processes. The results and possibilities for the application of these high-spatial-resolution FTIR techniques in spectral pathology, and eventually in clinical applications, are discussed.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Tendões/diagnóstico por imagem , Tendões/patologia , Animais , Bovinos , Colágeno/metabolismo , Masculino , Estresse Mecânico , Tendões/metabolismo , Cicatrização
8.
J Cataract Refract Surg ; 29(4): 686-93, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12686235

RESUMO

PURPOSE: To determine whether patients with age-related macular degeneration (ARMD) benefit from cataract surgery and to assess the risk of progression of preexisting maculopathy 4 and 12 months postoperatively. SETTING: Princess Alexandra Eye Pavilion, Royal Infirmary of Edinburgh, Edinburgh, Scotland. METHODS: Two groups of patients were evaluated prospectively. The study group comprised patients with ARMD scheduled to have cataract surgery (n = 40). The control group comprised patients with ARMD not having cataract surgery (n = 43). Patients were assessed at baseline (preoperatively) and 4 and 12 months postoperatively. Assessment included visual function tests and quality of life (QoL) measures. The mean values for each item tested were obtained for each group at each visit, and comparisons between visits were done using the Wilcoxon signed rank test. RESULTS: There were significant benefits of cataract surgery in terms of visual function and QoL measures at 4 and 12 months. There was no increased risk of progression of maculopathy in the study group. There were no significant differences in the items tested in the control group. CONCLUSIONS: One year postoperatively, QoL benefits were maintained in the study group and there was no increased risk of progression of maculopathy in patients with mild and moderate degrees of ARMD. Larger numbers of patients must be assessed prospectively for longer periods to determine the relative risk of progression of different stages of ARMD after cataract surgery.


Assuntos
Extração de Catarata , Catarata/complicações , Degeneração Macular/complicações , Qualidade de Vida , Acuidade Visual/fisiologia , Idoso , Idoso de 80 Anos ou mais , Catarata/diagnóstico , Catarata/fisiopatologia , Progressão da Doença , Feminino , Angiofluoresceinografia , Seguimentos , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Inquéritos e Questionários , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...