Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(39): e202210476, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35922393

RESUMO

Self-assembly makes metallo-interlocked architectures attractive targets, but being in equilibrium with smaller species means that they can suffer from dilution effects. We show that a junctioned system gives rise to a [Pd4 (L)2 ]8+ trefoil entangled tetrahedron irrespective of concentration. Heating the sample reversibly shifts the equilibrium from the knot to an isomeric non-interlocked dual metallo-cycle, demonstrating that thermodynamic equilibria can still be exploited for switching even in the absence of concentration effects.

2.
Chem Asian J ; 17(6): e202200093, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35139260

RESUMO

There is a concerted attempt to develop self-assembled metallo-cages of greater structural complexity, and heteroleptic PdII cages are emerging as prime candidates in these efforts. Most of these are dinuclear: few examples of higher nuclearity have been reported. We demonstrate here a robust method for the formation of tripalladium(II) cages from the 2 : 3 : 3 combination of a tritopic ligand, PdII , and a selection of ditopic ligands of the correct size and geometry.


Assuntos
Paládio , Paládio/química
3.
ACS Org Inorg Au ; 2(6): 464-476, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36855532

RESUMO

Conformational control is a key prerequisite for much molecular function. As chemists seek to create complex molecules that have applications beyond the academic laboratory, correct spatial positioning is critical. This is particularly true of flexible systems. Conformationally flexible molecules show potential because they resemble in many cases naturally occurring analogues such as the secondary structures found in proteins and peptides such as α-helices and ß-sheets. One of the ways in which conformation can be controlled in these molecules is through interaction with or coordination to metal ions. This review explores how secondary structure (i.e., controlled local conformation) in foldamers and other conformationally flexible systems can be enforced or modified through coordination to metal ions. We hope to provide examples that illustrate the power of metal ions to influence this structure toward multiple different outcomes.

4.
ACS Omega ; 6(44): 30115-30129, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778683

RESUMO

Molecular switching processes are important in a range of areas including the development of molecular machines. While there are numerous organic switching systems available, there are far less examples that exploit inorganic materials. The most common inorganic switching system remains the copper(I)/copper(II) switch developed by Sauvage and co-workers over 20 years ago. Herein, we examine if bidentate 2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine (pytri) and tridentate 2,6-bis[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]pyridine (tripy) moieties can be used to replace the more commonly exploited polypyridyl ligands 2,2'-bypyridine (bpy)/1,10-phenanthroline (phen) and 2,2';6',2″-terpyridine (terpy) in a copper(I)/(II) switching system. Two new ditopic ligands that feature bidentate (pytri, L1 or bpytri, L2) and tridentate tripy metal binding pockets were synthesized and used to generate a family of heteroleptic copper(I) and copper(II) 6,6'-dimesityl-2,2'-bipyridine (diMesbpy) complexes. Additionally, we synthesized a series of model copper(I) and copper(II) diMesbpy complexes. A combination of techniques including nuclear magnetic resonance (NMR) and UV-vis spectroscopies, high-resolution electrospray ionization mass spectrometry, and X-ray crystallography was used to examine the behavior of the compounds. It was found that L1 and L2 formed [(diMesbpy)Cu(L1 or L2)]2+ complexes where the copper(II) diMesbpy unit was coordinated exclusively in the tridenate tripy binding site. However, when the ligands (L1 and L2) were complexed with copper(I) diMesbpy units, a complex mixture was obtained. NMR and MS data indicated that a 1:1 stoichiometry of [Cu(diMesbpy)]+ and either L1 or L2 generated three complexes in solution, the dimetallic [(diMesbpy)2Cu2(L1 or L2)]2+ and the monometallic [(diMesbpy)Cu(L1 or L2)]+ isomers where the [Cu(diMesbpy)]+ unit is coordinated to either the bidentate or tridentate tripy binding sites of the ditopic ligands. The dimetallic [(diMesbpy)2Cu2(L1 or L2)](PF6)2 complexes were structurally characterized using X-ray crystallography. Both complexes feature a [Cu(diMesbpy)]+ coordinated to the bidentate (pytri or bpytri) pocket of the ditopic ligands (L1 or L2), as expected. They also feature a second [Cu(diMesbpy)]+ coordinated to the nominally tridentate tripy binding site in a four-coordinate hypodentate κ2-fashion. Competition experiments with model complexes showed that the binding strength of the bidentate pytri is similar to that of the κ2-tripy ligand, leading to the lack of selectivity. The results suggest that the pytri/tripy and bpytri/tripy ligand pairs cannot be used as replacements for the more common bpy/phen-terpy partners due to the lack of selectivity in the copper(I) state.

5.
Chem Asian J ; 16(1): 39-43, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33251757

RESUMO

A new ferrocene-containing [Pd3 (L4EFc )6 ]6+ (X- )6 (C ⋅ BF4 and C ⋅ SbF6 where X=BF4 - or SbF6 - ) self-assembled double-walled triangle has been synthesized from the known, rotationally flexible, 1,1'-bis(4-pyridylethynyl)ferrocene ligand (L4EFc ), and characterized by 1 H, 13 C and diffusion ordered (DOSY) NMR spectroscopies, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), X-ray crystallography and cyclic voltammetry (CV). The molecular structures confirmed that double-walled triangle cage systems (C ⋅ BF4 and C ⋅ SbF6 ) were generated. C ⋅ BF4 was shown to interact with the anionic guest, p-toluenesulfonate. CV experiments revealed that the triangles were redox active, however addition of the guest did not influence the redox potentials.

6.
Chem Asian J ; 15(10): 1567-1573, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32216064

RESUMO

Self-assembled metallosupramolecular architectures (MSAs) with built-in functionalities such as light-harvesting metal centers are a promising approach for developing emergent properties within discrete molecular systems. Herein we describe the synthesis of two new but simple "click" ligands featuring a bidentate 2-pyridyl-1,2,3-triazole chelate pocket linked to a monodentate pyridyl (either 3- or 4-substituted, L1 and L2) unit. The ligands and the corresponding four PdII and PtII metallo-ligands (Pd1, Pd2, Pt1 and Pt2) were synthesized and characterized using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and X-ray crystallography. Solid-state characterization of the series of ligands and metallo-ligands revealed that these compounds display a co-planar conformation of all the aryl units. The PtII containing metallo-ligands (Pt1 and Pt2) were found to assemble into square (Sqr) and triangular (Tri) shaped architectures when combined with neutral PdCl2 linker units. Additionally, the ability of the PtII metallo-ligands and Tri to photocatalyze the cycloaddition of singlet oxygen to anthracene was investigated.

7.
Angew Chem Int Ed Engl ; 59(27): 11101-11107, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32220036

RESUMO

A strategy is presented that enables the quantitative assembly of a heterobimetallic [PdPtL4 ]4+ cage. The presence of two different metal ions (PdII and PtII ) with differing labilities enables the cage to be opened and closed selectively at one end upon treatment with suitable stimuli. Combining an inert PtII tetrapyridylaldehyde complex with a suitably substituted pyridylamine and PdII ions led to the assembly of the cage. 1 H and DOSY NMR spectroscopy and ESI mass spectrometry data were consistent with the quantitative formation of the cage, and the heterobimetallic structure was confirmed using single-crystal X-ray crystallography. The structure of the host-guest adduct with a 2,6-diaminoanthraquinone guest molecule was determined. Addition of N,N'-dimethylaminopyridine (DMAP) resulted in the formation of the open-cage [PtL4 ]2+ compound and [Pd(DMAP)4 ]2+ complex. This process could then be reversed, with the reformation of the cage, upon addition of p-toluenesulfonic acid (TsOH).

8.
Dalton Trans ; 48(41): 15713-15722, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31549707

RESUMO

In this study, we present two ruthenium(ii) diimine complexes appended with ferrocene which show metal to ligand charge transfer 3MLCT emission lifetimes around 630 ns. We also present a similar complex with two ferrocene units which has decreased emission. These complexes have been studied by electrochemical, electronic absorption, and Raman, resonance Raman and transient resonance Raman means, coupled with density functional theoretical approaches. For these systems, the optical spectra are dominated by a low energy ruthenium(ii) MLCT transition; which can be modulated by the presence of pendant ferrocene units and the extent of conjugation of the ferrocenyl bipyridine backbone. Tuning of the lowest energy transition in terms of intensity (4 to 18 × 10-3 M-1 cm-1) and energy (535 to 563 nm) was achieved by these means.

9.
Chem Commun (Camb) ; 55(52): 7506-7509, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31187814

RESUMO

Two new ferrocene-containing [Pd2(LFc)4]4+(X-)4 (where X- = BF4- or SbF6-) self-assembled cages (C·BF4 and C·SbF6) were synthesised from the known, rotationally flexible, 1,1'-bis(3-pyridylethynyl)ferrocene ligand (LFc), and characterised by 1H, 13C and diffusion ordered (DOSY) NMR and UV-visible absorption spectroscopies, high resolution electrospray ionisation mass spectrometry (HR-ESI-MS), elemental analysis, X-ray crystallography and cyclic voltammetry (CV). The molecular structures confirmed that cage-like systems (C·BF4 and C·SbF6) were generated. Similar to related [Pd2L4]4+(X-)4, C·SbF6 was able to interact with a range of neutral and anionic guests, with p-toluenesulfonate showing the strongest association constant. Cyclic voltammetry studies revealed that the cage systems were redox active. However, the redox potential of the cage was unperturbed upon the addition of guests.

10.
Chem Asian J ; 14(8): 1136-1142, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30144280

RESUMO

Molecular recognition continues to be an area of keen interest for supramolecular chemists. The investigated [M(L)2 ]2+ metallo-ligands (M=PdII , PtII , L=2-(1-(pyridine-4-methyl)-1 H-1,2,3-triazol-4-yl)pyridine) form a planar cationic panel with vacant pyridyl binding sites. They interact with planar neutral aromatic guests through π-π and/or metallophilic interactions. In some cases, the metallo-ligands also interacted in the solid state with AgI either through coordination to the pendant pyridyl arms, or through metal-metal interactions, forming coordination polymers. We have therefore developed a system that reliably recognises a planar electron-rich guest in solution and in the solid state, and shows the potential to link the resultant host-guest adducts into extended solid-state structures. The facile synthesis and ready functionalisation of 2-pyridyl-1,2,3-triazole ligands through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry should allow for ready tuning of the electronic properties of adducts formed from these systems.

11.
Molecules ; 23(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110981

RESUMO

To realise useful control over molecular motion in the future an extensive toolbox of both actionable molecules and stimuli-responsive units must be developed. Previously, our laboratory has reported 1,1'-disubstituted ferrocene (Fc) rotor units which assume a contracted/π-stacked conformation until complexation of cationic metal ions causes rotation about the Ferrocene (Fc) molecular 'ball-bearing'. Herein, we explore the potential of using the photochemical ejection of [Ru(2,2'-bipyridyl)2]2+ units as a stimulus for the rotational contraction of new ferrocene rotor units. Fc rotors with both 'regular' and 'inverse' 2-pyridyl-1,2,3-triazole binding pockets and their corresponding [Ru(2,2'-bipyridyl)2]2+ complexes were synthesised. The rotors and complexes were characterised using nuclear magnetic resonance (NMR) and ultraviolet (UV)-visible spectroscopies, Electro-Spray Ionisation Mass Spectrometry (ESI⁻MS), and electrochemistry. The 1,1'-disubstituted Fc ligands were shown to π-stack both in solution and solid state. Density Functional Theory (DFT) calculations (CAM-B3LYP/6-31G(d)) support the notion that complexation to [Ru(2,2'-bipyridyl)2]2+ caused a rotation from the syn- to the anti-conformation. Upon photo-irradiation with UV light (254 nm), photo-ejection of the [Ru(2,2'-bipyridyl)2(CH3CN)2]2+ units in acetonitrile was observed. The re-complexation of the [Ru(2,2'-bipyridyl)2]2+ units could be achieved using acetone as the reaction solvent. However, the process was exceedingly slowly. Additionally, the Fc ligands slowly decomposed when exposed to UV irradiation meaning that only one extension and contraction cycle could be completed.


Assuntos
Compostos Ferrosos/química , Luz , Metalocenos/química , Processos Fotoquímicos , Rutênio/química , Triazóis/química , Eletroquímica , Compostos Ferrosos/síntese química , Ligantes , Espectroscopia de Ressonância Magnética , Metalocenos/síntese química , Estrutura Molecular , Fotoquímica , Espectrofotometria Ultravioleta
12.
Inorg Chem ; 57(7): 3602-3614, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29381330

RESUMO

The self-assembly of ligands of different geometries with metal ions gives rise to metallosupramolecular architectures of differing structural types. The rotational flexibility of ferrocene allows for conformational diversity, and, as such, self-assembly processes with 1,1'-disubstituted ferrocene ligands could lead to a variety of interesting architectures. Herein, we report a small family of three bis-bidentate 1,1'-disubstituted ferrocene ligands, functionalized with either 2,2'-bipyridine or 2-pyridyl-1,2,3-triazole chelating units. The self-assembly of these ligands with the (usually) four-coordinate, diamagnetic metal ions Cu(I), Ag(I), and Pd(II) was examined using a range of techniques including 1H and DOSY NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, X-ray crystallography, and density functional theory calculations. Additionally, the electrochemical properties of these redox-active metallosupramolecular assemblies were examined using cyclic voltammetry and differential pulse voltammetry. The copper(I) complexes of the 1,1'-disubstituted ferrocene ligands were found to be coordination polymers, while the silver(I) and palladium(II) complexes formed discrete [1 + 1] or [2 + 2] metallomacrocyclic architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...