Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 27(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36401344

RESUMO

Significance: Insertable optical continuous glucose monitors (CGMs) with wearable readers are a strong option for monitoring individuals with diabetes. However, a fully insertable CGM requires a small form factor while still delivering sufficient signal to be read through tissue by an external device. Previous work has suggested that a multimodal repeating unit (barcode) approach may meet these requirements, but the biosensor geometry must be optimized to meet performance criteria. Aim: This work details in silico trials conducted to evaluate the geometry of a fully insertable multimodal optical biosensor with respect to both optical output and species diffusion in vivo. Approach: Monte Carlo modeling is used to evaluate the luminescent output of three presupposed biosensor designs based on size constraints for an injectable and logical placement of the bar code compartments. Specifically, the sensitivity of the luminescent output to displacement of the biosensor in the X and Y directions, overall size of the selected design, and size of an individual repeating unit are analyzed. Further, an experimentally validated multiphysics model is used to evaluate the diffusion and reaction of glucose and oxygen within the biosensor to estimate the occurrence of chemical crosstalk between the assay components. Results: A stacked cylinder multimodal biosensor 4.4 mm in length with repeating units 0.36 mm in length was found to yield a greater luminescent output than the current "barcode" biosensor design. In addition, it was found that a biosensor with enzymatic elements does not significantly deplete glucose locally and thus does not impact the diffusion profile of glucose in adjacent compartments containing nonenzymatic assays. Conclusions: Computational modeling was used to design the geometry of a multimodal, insertable, and optical CGM to ensure that the optical output and chemical diffusion profile are sufficient for this device to function in vivo.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Humanos , Glucose , Glicemia , Luminescência
2.
Biosensors (Basel) ; 12(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004994

RESUMO

Cardiovascular disease is the leading cause of death globally. To provide continuous monitoring of blood pressure (BP), a parameter which has shown to improve health outcomes when monitored closely, many groups are trying to measure blood pressure via noninvasive photoplethysmography (PPG). However, the PPG waveform is subject to variation as a function of patient-specific and device factors and thus a platform to enable the evaluation of these factors on the PPG waveform and subsequent hemodynamic parameter prediction would enable device development. Here, we present a computational workflow that combines Monte Carlo modeling (MC), gaussian combination, and additive noise to create synthetic dataset of volar fingertip PPG waveforms representative of a diverse cohort. First, MC is used to determine PPG amplitude across age, skin tone, and device wavelength. Then, gaussian combination generates accurate PPG waveforms, and signal processing enables data filtration and feature extraction. We improve the limitations of current synthetic PPG frameworks by enabling inclusion of physiological and anatomical effects from body site, skin tone, and age. We then show how the datasets can be used to examine effects of device characteristics such as wavelength, analog to digital converter specifications, filtering method, and feature extraction. Lastly, we demonstrate the use of this framework to show the insensitivity of a support vector machine predictive algorithm compared to a neural network and bagged trees algorithm.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Simulação por Computador , Hemodinâmica , Humanos , Fotopletismografia/métodos , Fluxo de Trabalho
3.
J Biomed Opt ; 27(8)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35505461

RESUMO

SIGNIFICANCE: Continuous glucose monitors (CGMs) are increasingly utilized as a way to provide healthcare to the over 10% of Americans that have diabetes. Fully insertable and optically transduced biosensors are poised to further improve CGMs by extending the device lifetime and reducing cost. However, optical modeling of light propagation in tissue is necessary to ascertain device performance. AIM: Monte Carlo modeling of photon transport through tissue was used to assess the luminescent output of a fully insertable glucose biosensor that uses a multimodal Förster resonance energy transfer competitive binding assay and a phosphorescence lifetime decay enzymatic assay. APPROACH: A Monte Carlo simulation framework of biosensor luminescence and tissue autofluorescence was built using MCmatlab. Simulations were first validated against previous research and then applied to predict the response of a biosensor in development. RESULTS: Our results suggest that a diode within the safety standards for light illumination on the skin, with far-red excitation, allows the luminescent biosensor to yield emission strong enough to be detectable by a common photodiode. CONCLUSIONS: The computational model showed that the expected fluorescent power output of a near-infrared light actuated barcode was five orders of magnitude greater than a visible spectrum excited counterpart biosensor.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Glucose , Humanos , Método de Monte Carlo , Fótons
4.
J Biomed Opt ; 27(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35352513

RESUMO

SIGNIFICANCE: Obesity is a worldwide epidemic contributing directly to several cardiovascular risk factors including hypertension and type 2 diabetes. Wearable devices are becoming better at quantifying biomarkers relevant for the management of health and fitness. Unfortunately, both anecdotal evidence and recent studies indicate that some wearables have higher levels of error when utilized by populations with darker skin tones and high body mass index (BMI). There is an urgent need for a better evaluation of the limits of wearable health technologies when used by obese individuals. AIMS: (1) To review the current know-how on changes due to obesity in the skin epidermis, dermis, and subcutis that could affect the skin optical properties; (2) for the green wavelength range, to evaluate the difference in absorption and scattering coefficients from the abdominal skin between individuals with and without elevated BMI. The changes include alterations in layer thickness and cell size, as well as significant differences in chromophores and scatterer content, e.g., water, hemoglobin, collagen, and lipids. APPROACH: We have summarized literature pertaining to changes in skin and its components in obesity and report the results of our search using articles published between years 1971 and 2020. A linear model was used to demonstrate the absorption and reduced scattering coefficient of the abdominal skin of individuals with and without elevated BMI in the green wavelength range (530 to 550 nm) that is typically found in most wearables. RESULTS: The general trends indicate a decrease in absorption for both dermis and subcutis and an increase in reduced scattering for both epidermis and dermis. At 544-nm wavelength, a typical wavelength used for photoplethysmography (PPG), the absorption coefficient's relative percentage difference between high and low BMI skin, was 49% in the subcutis, 19% in the dermis, and negligible in the epidermis, whereas the reduced scattering coefficient relative difference was 21%, 29%, and 165% respectively. CONCLUSIONS: These findings suggest that there could be significant errors in the output of optical devices used for monitoring health and fitness if changes due to obesity are not accounted for in their design.


Assuntos
Diabetes Mellitus Tipo 2 , Índice de Massa Corporal , Epiderme , Humanos , Obesidade/diagnóstico por imagem , Pele/irrigação sanguínea , Pele/diagnóstico por imagem
5.
Biosensors (Basel) ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923469

RESUMO

Photoplethysmography (PPG) is a low-cost, noninvasive optical technique that uses change in light transmission with changes in blood volume within tissue to provide information for cardiovascular health and fitness. As remote health and wearable medical devices become more prevalent, PPG devices are being developed as part of wearable systems to monitor parameters such as heart rate (HR) that do not require complex analysis of the PPG waveform. However, complex analyses of the PPG waveform yield valuable clinical information, such as: blood pressure, respiratory information, sympathetic nervous system activity, and heart rate variability. Systems aiming to derive such complex parameters do not always account for realistic sources of noise, as testing is performed within controlled parameter spaces. A wearable monitoring tool to be used beyond fitness and heart rate must account for noise sources originating from individual patient variations (e.g., skin tone, obesity, age, and gender), physiology (e.g., respiration, venous pulsation, body site of measurement, and body temperature), and external perturbations of the device itself (e.g., motion artifact, ambient light, and applied pressure to the skin). Here, we present a comprehensive review of the literature that aims to summarize these noise sources for future PPG device development for use in health monitoring.


Assuntos
Frequência Cardíaca/fisiologia , Monitorização Fisiológica , Fotopletismografia , Artefatos , Pressão Sanguínea , Humanos , Respiração , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis
6.
Sci Adv ; 3(7): e1700669, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28782028

RESUMO

With the increasing prevalence of Alzheimer's disease (AD), significant efforts have been directed toward developing novel diagnostics and biomarkers that can enhance AD detection and management. AD affects the cognition, behavior, function, and physiology of patients through mechanisms that are still being elucidated. Current AD diagnosis is contingent on evaluating which symptoms and signs a patient does or does not display. Concerns have been raised that AD diagnosis may be affected by how those measurements are analyzed. Unbiased means of diagnosing AD using computational algorithms that integrate multidisciplinary inputs, ranging from nanoscale biomarkers to cognitive assessments, and integrating both biochemical and physical changes may provide solutions to these limitations due to lack of understanding for the dynamic progress of the disease coupled with multiple symptoms in multiscale. We show that nanoscale physical properties of protein aggregates from the cerebral spinal fluid and blood of patients are altered during AD pathogenesis and that these properties can be used as a new class of "physical biomarkers." Using a computational algorithm, developed to integrate these biomarkers and cognitive assessments, we demonstrate an approach to impartially diagnose AD and predict its progression. Real-time diagnostic updates of progression could be made on the basis of the changes in the physical biomarkers and the cognitive assessment scores of patients over time. Additionally, the Nyquist-Shannon sampling theorem was used to determine the minimum number of necessary patient checkups to effectively predict disease progression. This integrated computational approach can generate patient-specific, personalized signatures for AD diagnosis and prognosis.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Biomarcadores , Cognição , Algoritmos , Biologia Computacional , Progressão da Doença , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica , Modelos Biológicos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...