Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(4): eabm4322, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089780

RESUMO

Nanoscale multi-principal element intermetallics (MPEIs) may provide a broad and tunable compositional space of active, high-surface area materials with potential applications such as catalysis and magnetics. However, MPEI nanoparticles are challenging to fabricate because of the tendency of the particles to grow/agglomerate or phase-separated during annealing. Here, we demonstrate a disorder-to-order phase transition approach that enables the synthesis of ultrasmall (4 to 5 nm) and stable MPEI nanoparticles (up to eight elements). We apply just 5 min of Joule heating to promote the phase transition of the nanoparticles into L10 intermetallic structure, which is then preserved by rapidly cooling. This disorder-to-order transition results in phase-stable nanoscale MPEIs with compositions (e.g., PtPdAuFeCoNiCuSn), which have not been previously attained by traditional synthetic methods. This synthesis strategy offers a new paradigm for developing previously unexplored MPEI nanoparticles by accessing a nanoscale-size regime and novel compositions with potentially broad applications.

2.
J Hazard Mater ; 429: 128317, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35086037

RESUMO

The environmental fate of antimony (Sb) is often strongly affected by adsorption, and the Sb isotope fractionation mechanism during adsorption has not been reported. Four batch experiments (kinetic, isothermal, effect of pH, and effect of coexisting anions) were conducted to evaluate the mechanism of Sb(V) adsorption to γ-Al2O3 and the fractionation of Sb isotopes. Extended X-ray absorption fine structure (EXAFS) analyses show Sb(V) adsorption on γ-Al2O3 occurs via outer-sphere surface complexation. The triple-layer model (TLM) effectively predicted the theoretical Sb adsorption amount under different pH conditions. The Sb isotope fractionation in the adsorption process can be divided into an initial kinetic stage (Rayleigh model, αadsorbed-aqueous = 0.99975 ± 0.00003) and subsequent isotopic equilibrium stage due to isotope exchange; however, no significant equilibrium isotope fractionation (Δ123Sbaqueous-adsorbed = ~0 ± 0.08‰) was evident by the end of the experiments. We propose the lack of significant equilibrium isotope fractionation in the effect of pH and isothermal experiments is due to Sb forming an outer-sphere complex on γ-Al2O3. This study reveals Sb equilibrium isotope fractionation does not occur during Sb(V) adsorption onto γ-Al2O3, providing a reference for the future study of Sb isotopes and furthering understanding of the Sb isotope fractionation mechanism.

3.
Sci Adv ; 6(11): eaaz0510, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32201728

RESUMO

Multi-elemental alloy nanoparticles (MEA-NPs) hold great promise for catalyst discovery in a virtually unlimited compositional space. However, rational and controllable synthesize of these intrinsically complex structures remains a challenge. Here, we report the computationally aided, entropy-driven design and synthesis of highly efficient and durable catalyst MEA-NPs. The computational strategy includes prescreening of millions of compositions, prediction of alloy formation by density functional theory calculations, and examination of structural stability by a hybrid Monte Carlo and molecular dynamics method. Selected compositions can be efficiently and rapidly synthesized at high temperature (e.g., 1500 K, 0.5 s) with excellent thermal stability. We applied these MEA-NPs for catalytic NH3 decomposition and observed outstanding performance due to the synergistic effect of multi-elemental mixing, their small size, and the alloy phase. We anticipate that the computationally aided rational design and rapid synthesis of MEA-NPs are broadly applicable for various catalytic reactions and will accelerate material discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...