Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(3)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336964

RESUMO

Hepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles. Regardless of infections leading to extreme viral loads, which may reach 1010 virions per mL serum, hepatitis B viruses are of low abundance and productivity in individual cells. Imaging of the infections in cells is thus a particular challenge especially for cccDNA that exists only in a few copies. The review describes the significance of microscopical approaches on genome and transcript detection for understanding hepatitis B virus infections, implications for understanding treatment outcomes, and recent microscopical approaches, which have not been applied in HBV research.


Assuntos
Hepatite B Crônica , Hepatite B , Infecções por Herpesviridae , Neoplasias Hepáticas , DNA Circular , DNA Viral/genética , Vírus da Hepatite B/genética , Humanos , Replicação Viral
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35064076

RESUMO

Adenosine deaminases acting on RNA (ADAR) are RNA-editing enzymes that may restrict viral infection. We have utilized deep sequencing to determine adenosine to guanine (A→G) mutations, signifying ADAR activity, in clinical samples retrieved from 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in the early phase of the COVID-19 pandemic. A→G mutations were detected in 0.035% (median) of RNA residues and were predominantly nonsynonymous. These mutations were rarely detected in the major viral population but were abundant in minor viral populations in which A→G was more prevalent than any other mutation (P < 0.001). The A→G substitutions accumulated in the spike protein gene at positions corresponding to amino acids 505 to 510 in the receptor binding motif and at amino acids 650 to 655. The frequency of A→G mutations in minor viral populations was significantly associated with low viral load (P < 0.001). We additionally analyzed A→G mutations in 288,247 SARS-CoV-2 major (consensus) sequences representing the dominant viral population. The A→G mutations observed in minor viral populations in the initial patient cohort were increasingly detected in European consensus sequences between March and June 2020 (P < 0.001) followed by a decline of these mutations in autumn and early winter (P < 0.001). We propose that ADAR-induced deamination of RNA is a significant source of mutated SARS-CoV-2 and hypothesize that the degree of RNA deamination may determine or reflect viral fitness and infectivity.


Assuntos
Adenosina Desaminase/genética , COVID-19/epidemiologia , Mutação Puntual , Edição de RNA , RNA Viral/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , COVID-19/genética , COVID-19/transmissão , COVID-19/virologia , Desaminação , Feminino , Aptidão Genética , Genoma Viral , Guanina/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Suécia/epidemiologia , Carga Viral , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...