Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(7): e9092, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35845358

RESUMO

The spread of invasive insect species causes enormous ecological damage and economic losses worldwide. A reliable method that tracks back an invaded insect's origin would be of great use to entomologists, phytopathologists, and pest managers. The spongy moth (Lymantria dispar, Linnaeus 1758) is a persistent invasive pest in the Northeastern United States and periodically causes major defoliations in temperate forests. We analyzed field-captured (Europe, Asia, United States) and laboratory-reared L. dispar specimens for their natal isotopic hydrogen and nitrogen signatures imprinted in their biological tissues (δ2H and δ15N) and compared these values to the long-term mean δ2H of regional precipitation (Global Network of Isotopes in Precipitation) and δ15N of regional plants at the capture site. We established the percentage of hydrogen-deuterium exchange for L. dispar tissue (Pex = 8.2%) using the comparative equilibration method and two-source mixing models, which allowed the extraction of the moth's natal δ2H value. We confirmed that the natal δ2H and δ15N values of our specimens are related to the environmental signatures at their geographic origins. With our regression models, we were able to isolate potentially invasive individuals and give estimations of their geographic origin. To enable the application of these methods on eggs, we established an egg-to-adult fraction factor for L. dispar (Δegg-adult = 16.3 ± 4.3‰). Our models suggested that around 25% of the field-captured spongy moths worldwide were not native in the investigated capture sites. East Asia was the most frequently identified location of probable origin. Furthermore, our data suggested that eggs found on cargo ships in the United States harbors in Alaska, California, and Louisiana most probably originated from Asian L. dispar in East Russia. These findings show that stable isotope biomarkers give a unique insight into invasive insect species pathways, and thus, can be an effective tool to monitor the spread of insect pest epidemics.

2.
J Environ Manage ; 310: 114725, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217447

RESUMO

The major event that hit Europe in summer 2021 reminds society that floods are recurrent and among the costliest and deadliest natural hazards. The long-term flood risk management (FRM) efforts preferring sole technical measures to prevent and mitigate floods have shown to be not sufficiently effective and sensitive to the environment. Nature-Based Solutions (NBS) mark a recent paradigm shift of FRM towards solutions that use nature-derived features, processes and management options to improve water retention and mitigate floods. Yet, the empirical evidence on the effects of NBS across various settings remains fragmented and their implementation faces a series of institutional barriers. In this paper, we adopt a community expert perspective drawing upon LAND4FLOOD Natural flood retention on private land network (https://www.land4flood.eu) in order to identify a set of barriers and their cascading and compound interactions relevant to individual NBS. The experts identified a comprehensive set of 17 barriers affecting the implementation of 12 groups of NBS in both urban and rural settings in five European regional environmental domains (i.e., Boreal, Atlantic, Continental, Alpine-Carpathian, and Mediterranean). Based on the results, we define avenues for further research, connecting hydrology and soil science, on the one hand, and land use planning, social geography and economics, on the other. Our suggestions ultimately call for a transdisciplinary turn in the research of NBS in FRM.


Assuntos
Inundações , Hidrologia , Geografia , Gestão de Riscos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...