Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0268138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588425

RESUMO

High Duty Cycle (HDC) echolocating bats use high frequency echolocation pulses that are clutter resistant, but their high frequencies give them limited range. Despite their unique ability to reject background clutter while simultaneously detecting fluttering prey, the frequency of their echolocation pulses has a strong correlation with level of environmental clutter, lower frequency pulses of HDC bats being associated with more open environments. The Foraging Habitat Hypothesis (FHH) proposes that the ecological significance of these lower frequency pulses in HDC bats in open environments is that they allow longer prey detection distances. To test the FHH, we compared the frequencies, Source Levels (SLs) and detection distances of Rhinolophus capensis, a HDC bat that has been shown to vary its call frequency in relation to habitat structure. As a further test of the FHH we investigated the SLs and detection distances of Rhinolophus damarensis (a heterospecific species that occurs in the same open desert environment as R. capensis but echolocates at a higher dominant pulse frequency). In the open desert, R. capensis emitted both lower frequency and higher SL pulses giving them longer detection distances than R. capensis in the cluttered fynbos. SL contributed more to differences in detection distances in both R. capensis and R. damarensis than frequency. In a few instances, R. damarensis achieved similar detection distances to desert-inhabiting R. capensis by emitting much higher SLs despite their average SLs being lower. These results suggest that lower frequency echolocation pulses are not a prerequisite for open desert living but may increase detection distance while avoiding energetic costs required for high SLs.


Assuntos
Quirópteros , Ecolocação , Animais , Ecossistema
2.
PLoS One ; 12(11): e0187769, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186147

RESUMO

Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature) on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455) significantly explained a proportion of the variation in resting frequency across sites (P < 0.05). Specifically, at higher relative humidity (around 60%) prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to decrease the detection volume in echolocating bats and adversely impact their foraging efficiency.


Assuntos
Quirópteros/fisiologia , Ecolocação , Geografia , Animais , Mudança Climática , Feminino , Masculino , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA