Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34172441

RESUMO

Lignocellulosic biomass remains unharnessed for the production of renewable fuels and chemicals due to challenges in deconstruction and the toxicity its hydrolysates pose to fermentation microorganisms. Here, we show in Saccharomyces cerevisiae that engineered aldehyde reduction and elevated extracellular potassium and pH are sufficient to enable near-parity production between inhibitor-laden and inhibitor-free feedstocks. By specifically targeting the universal hydrolysate inhibitors, a single strain is enhanced to tolerate a broad diversity of highly toxified genuine feedstocks and consistently achieve industrial-scale titers (cellulosic ethanol of >100 grams per liter when toxified). Furthermore, a functionally orthogonal, lightweight design enables seamless transferability to existing metabolically engineered chassis strains: We endow full, multifeedstock tolerance on a xylose-consuming strain and one producing the biodegradable plastics precursor lactic acid. The demonstration of "drop-in" hydrolysate competence enables the potential of cost-effective, at-scale biomass utilization for cellulosic fuel and nonfuel products alike.

2.
Genetics ; 216(3): 611-612, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33158982

RESUMO

The Thomas Hunt Morgan Medal recognizes lifetime contributions to the field of genetics. The 2020 recipient is Gerald R. Fink of Massachusetts Institute of Technology and the Whitehead Institute for Biomedical Research, recognizing the discovery of principles central to genome organization and regulation in eukaryotic cells.


Assuntos
Genética/história , Distinções e Prêmios , História do Século XX , História do Século XXI , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 48(13): 7404-7420, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32501509

RESUMO

RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5'-to-3' exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii, and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand and degradation of sliced target RNA.


Assuntos
Exorribonucleases/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Proteínas Argonautas/metabolismo , Clonagem Molecular , Exorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces/genética
4.
Cell Syst ; 9(6): 534-547.e5, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31734159

RESUMO

Branched-chain alcohols are attractive advanced biofuels; however, their cellular toxicity is an obstacle to engineering microbes to produce them at high titers. We performed genome-wide screens on the Saccharomyces cerevisiae gene deletion library to identify cell systems involved in isobutanol-specific tolerance. Deletion of pentose phosphate pathway genes GND1 or ZWF1 causes hypersensitivity to isobutanol but not to ethanol. By contrast, deletion of GLN3 increases yeast tolerance specifically to branched-chain alcohols. Transcriptomic analyses revealed that isobutanol induces a nitrogen starvation response via GLN3 and GCN4, upregulating amino acid biosynthesis and nitrogen scavenging while downregulating glycolysis, cell wall biogenesis, and membrane lipid biosynthesis. Disruption of this response by deleting GLN3 is enough to enhance tolerance and boost isobutanol production 4.9-fold in engineered strains. This study illustrates how adaptive mechanisms to tolerate stress can lead to toxicity in microbial fermentations for chemical production and how genetic interventions can boost production by evading such mechanisms.


Assuntos
Butanóis/metabolismo , Via de Pentose Fosfato/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Biocombustíveis/microbiologia , Etanol/metabolismo , Fermentação/genética , Deleção de Genes , Engenharia Genética/métodos , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética
5.
Nat Commun ; 10(1): 3414, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363087

RESUMO

Despite the vast number of modification sites mapped within mRNAs, known examples of consequential mRNA modifications remain rare. Here, we provide multiple lines of evidence to show that Ime4p, an N6-methyladenosine (m6A) methyltransferase required for meiosis in yeast, acts by methylating a site in the 3' UTR of the mRNA encoding Rme1p, a transcriptional repressor of meiosis. Consistent with this mechanism, genetic analyses reveal that IME4 functions upstream of RME1. Transcriptome-wide, RME1 is the primary message that displays both increased methylation and reduced expression in an Ime4p-dependent manner. In yeast strains for which IME4 is dispensable for meiosis, a natural polymorphism in the RME1 promoter reduces RME1 transcription, obviating the requirement for methylation. Mutation of a single m6A site in the RME1 3' UTR increases Rme1p repressor production and reduces meiotic efficiency. These results reveal the molecular and physiological consequences of a modification in the 3' UTR of an mRNA.


Assuntos
Regiões 3' não Traduzidas , Adenosina/análogos & derivados , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Adenosina/metabolismo , Regulação Fúngica da Expressão Gênica , Meiose , Metilação , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(11): 5045-5054, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804202

RESUMO

The phenotypic consequence of a given mutation can be influenced by the genetic background. For example, conditional gene essentiality occurs when the loss of function of a gene causes lethality in one genetic background but not another. Between two individual Saccharomyces cerevisiae strains, S288c and Σ1278b, ∼1% of yeast genes were previously identified as "conditional essential." Here, in addition to confirming that some conditional essential genes are modified by a nonchromosomal element, we show that most cases involve a complex set of genomic modifiers. From tetrad analysis of S288C/Σ1278b hybrid strains and whole-genome sequencing of viable hybrid spore progeny, we identified complex sets of multiple genomic regions underlying conditional essentiality. For a smaller subset of genes, including CYS3 and CYS4, each of which encodes components of the cysteine biosynthesis pathway, we observed a segregation pattern consistent with a single modifier associated with conditional essentiality. In natural yeast isolates, we found that the CYS3/CYS4 conditional essentiality can be caused by variation in two independent modifiers, MET1 and OPT1, each with roles associated with cellular cysteine physiology. Interestingly, the OPT1 allelic variation appears to have arisen independently from separate lineages, with rare allele frequencies below 0.5%. Thus, while conditional gene essentiality is usually driven by genetic interactions associated with complex modifier architectures, our analysis also highlights the role of functionally related, genetically independent, and rare variants.


Assuntos
Genes Modificadores , Patrimônio Genético , Saccharomyces cerevisiae/genética , Alelos , Vias Biossintéticas , Cisteína/biossíntese , Genes Essenciais , Genoma Fúngico , Filogenia , Saccharomyces cerevisiae/isolamento & purificação
7.
Nature ; 565(7741): 606-611, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651636

RESUMO

Spliceosomal introns are ubiquitous non-coding RNAs that are typically destined for rapid debranching and degradation. Here we describe 34 excised introns in Saccharomyces cerevisiae that-despite being rapidly degraded in log-phase growth-accumulate as linear RNAs under either saturated-growth conditions or other stresses that cause prolonged inhibition of TORC1, which is a key integrator of growth signalling. Introns that become stabilized remain associated with components of the spliceosome and differ from other spliceosomal introns in having a short distance between their lariat branch point and 3' splice site, which is necessary and sufficient for their stabilization. Deletion of these unusual introns is disadvantageous in saturated conditions and causes aberrantly high growth rates in yeast that are chronically challenged with the TORC1 inhibitor rapamycin. The reintroduction of native or engineered stable introns suppresses this aberrant rapamycin response. Thus, excised introns function within the TOR growth-signalling network of S. cerevisiae and, more generally, excised spliceosomal introns can have biological functions.


Assuntos
Íntrons/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Actinas/genética , Genes Fúngicos/genética , Aptidão Genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Sítios de Splice de RNA/genética , Estabilidade de RNA , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Spliceossomos/metabolismo
8.
Metab Eng ; 51: 20-31, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30268818

RESUMO

Monoethylene glycol (MEG) is an important commodity chemical with applications in numerous industrial processes, primarily in the manufacture of polyethylene terephthalate (PET) polyester used in packaging applications. In the drive towards a sustainable chemical industry, bio-based production of MEG from renewable biomass has attracted growing interest. Recent attempts for bio-based MEG production have investigated metabolic network modifications in Escherichia coli, specifically rewiring the xylose assimilation pathways for the synthesis of MEG. In the present study, we examined the suitability of Saccharomyces cerevisiae, a preferred organism for industrial applications, as platform for MEG biosynthesis. Based on combined genetic, biochemical and fermentation studies, we report evidence for the existence of an endogenous biosynthetic route for MEG production from D-xylose in S. cerevisiae which consists of phosphofructokinase and fructose-bisphosphate aldolase, the two key enzymes in the glycolytic pathway. Further metabolic engineering and process optimization yielded a strain capable of producing up to 4.0 g/L MEG, which is the highest titer reported in yeast to-date.


Assuntos
Etilenoglicol/metabolismo , Glicólise/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Xilose/metabolismo
9.
iScience ; 9: 101-119, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30388704

RESUMO

To gain insights into the molecular mechanisms and pathways involved in the activation of γ-herpesvirus (MHV68)-specific T cell receptor transnuclear (TN) CD8+ T cells, we performed a comprehensive transcriptomic analysis. Upon viral infection, we observed differential expression of several thousand transcripts encompassing various networks and pathways in activated TN cells compared with their naive counterparts. Activated cells highly upregulated galectin-3. We therefore explored the role of galectin-3 in influencing anti-MHV68 immunity. Galectin-3 was recruited at the immunological synapse during activation of CD8+ T cells and helped constrain their activation. The localization of galectin-3 to immune synapse was evident during the activation of both naive and memory CD8+ T cells. Galectin-3 knockout mice mounted a stronger MHV68-specific CD8+ T cell response to the majority of viral epitopes and led to better viral control. Targeting intracellular galectin-3 in CD8+ T cells may therefore serve to enhance response to efficiently control infections.

10.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695624

RESUMO

We have created new vectors for clustered regularly interspaced short palindromic repeat (CRISPR) mutagenesis in Candida albicans, Saccharomyces cerevisiae, Candida glabrata, and Naumovozyma castellii These new vectors permit a comparison of the requirements for CRISPR mutagenesis in each of these species and reveal different dependencies for repair of the Cas9 double-stranded break. Both C. albicans and S. cerevisiae rely heavily on homology-directed repair, whereas C. glabrata and N. castellii use both homology-directed and nonhomologous end-joining pathways. The high efficiency of these vectors permits the creation of unmarked deletions in each of these species and the recycling of the dominant selection marker for serial mutagenesis in prototrophs. A further refinement, represented by the "Unified" Solo vectors, incorporates Cas9, guide RNA, and repair template into a single vector, thus enabling the creation of vector libraries for pooled screens. To facilitate the design of such libraries, we have identified guide sequences for each of these species with updated guide selection algorithms.IMPORTANCE CRISPR-mediated genome engineering technologies have revolutionized genetic studies in a wide range of organisms. Here we describe new vectors and guide sequences for CRISPR mutagenesis in the important human fungal pathogens C. albicans and C. glabrata, as well as in the related yeasts S. cerevisiae and N. castellii The design of these vectors enables efficient serial mutagenesis in each of these species by leaving few, if any, exogenous sequences in the genome. In addition, we describe strategies for the creation of unmarked deletions in each of these species and vector designs that permit the creation of vector libraries for pooled screens. These tools and strategies promise to advance genetic engineering of these medically and industrially important species.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , Fungos/genética , Edição de Genes/métodos , Mutagênese , Candida albicans/genética , Candida glabrata/genética , Quebras de DNA de Cadeia Dupla , Vetores Genéticos , RNA Guia de Cinetoplastídeos/genética , Saccharomyces cerevisiae/genética
11.
Biosens Bioelectron ; 89(Pt 2): 789-794, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27816596

RESUMO

Current techniques to characterize leukocyte subgroups in blood require long sample preparation times and sizable sample volumes. A simplified method for leukocyte characterization using smaller blood volumes would thus be useful in diagnostic settings. Here we describe a flow system comprised of two functionalized graphene oxide (GO) surfaces that allow the capture of distinct leukocyte populations from small volumes blood using camelid single-domain antibodyfragments (VHHs) as capture agents. We used site-specifically labeled leukocytes to detect and identify cells exposed to fungal challenge. Combining the chemical and optical properties of GO with the versatility of the VHH scaffold in the context of a flow system provides a quick and efficient method for the capture and characterization of functional leukocytes.


Assuntos
Anticorpos Imobilizados/química , Candida albicans/isolamento & purificação , Separação Celular/métodos , Grafite/química , Leucócitos/citologia , Leucócitos/microbiologia , Anticorpos de Domínio Único/química , Aminoaciltransferases/análise , Animais , Proteínas de Bactérias/análise , Candidíase/sangue , Cisteína Endopeptidases/análise , Feminino , Citometria de Fluxo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nanoestruturas/química
12.
Sci Adv ; 1(3): e1500248, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977940

RESUMO

Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.

13.
Science ; 346(6205): 71-5, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25278607

RESUMO

Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.


Assuntos
Biocombustíveis , Farmacorresistência Fúngica , Etanol/metabolismo , Fosfatos/metabolismo , Compostos de Potássio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/genética , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Engenharia Química , Farmacorresistência Fúngica/genética , Etanol/farmacologia , Fermentação , Engenharia Genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Bombas de Próton/genética , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulação para Cima , Xilose/metabolismo
14.
Science ; 344(6188): 1065, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24904126
15.
Proc Natl Acad Sci U S A ; 111(21): 7719-22, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24825890

RESUMO

The measurement of any nonchromosomal genetic contribution to the heritability of a trait is often confounded by the inability to control both the chromosomal and nonchromosomal information in a population. We have designed a unique system in yeast where we can control both sources of information so that the phenotype of a single chromosomal polymorphism can be measured in the presence of different cytoplasmic elements. With this system, we have shown that both the source of the mitochondrial genome and the presence or absence of a dsRNA virus influence the phenotype of chromosomal variants that affect the growth of yeast. Moreover, by considering this nonchromosomal information that is passed from parent to offspring and by allowing chromosomal and nonchromosomal information to exhibit nonadditive interactions, we are able to account for much of the heritability of growth traits. Taken together, our results highlight the importance of including all sources of heritable information in genetic studies and suggest a possible avenue of attack for finding additional missing heritability.


Assuntos
Cromossomos/genética , Herança Extracromossômica/genética , Terapia Genética/métodos , Doenças Mitocondriais/terapia , Modelos Genéticos , Fenótipo , Leveduras/genética , Análise de Variância , Biologia Computacional , Frequência do Gene , Humanos , Doenças Mitocondriais/genética , Polimorfismo de Nucleotídeo Único/genética , Leveduras/crescimento & desenvolvimento
16.
Nat Biotechnol ; 32(5): 473-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705516

RESUMO

Phenotyping single cells based on the products they secrete or consume is a key bottleneck in many biotechnology applications, such as combinatorial metabolic engineering for the overproduction of secreted metabolites. Here we present a flexible high-throughput approach that uses microfluidics to compartmentalize individual cells for growth and analysis in monodisperse nanoliter aqueous droplets surrounded by an immiscible fluorinated oil phase. We use this system to identify xylose-overconsuming Saccharomyces cerevisiae cells from a population containing one such cell per 10(4) cells and to screen a genomic library to identify multiple copies of the xylose isomerase gene as a genomic change contributing to high xylose consumption, a trait important for lignocellulosic feedstock utilization. We also enriched L-lactate-producing Escherichia coli clones 5,800× from a population containing one L-lactate producer per 10(4) D-lactate producers. Our approach has broad applications for single-cell analyses, such as in strain selection for the overproduction of fuels, chemicals and pharmaceuticals.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos , Escherichia coli/citologia , Escherichia coli/isolamento & purificação , Espaço Extracelular/metabolismo , Ácido Láctico/análise , Ácido Láctico/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/isolamento & purificação
17.
Cell ; 155(6): 1409-21, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24269006

RESUMO

N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.


Assuntos
Meiose , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces/citologia , Saccharomyces/metabolismo , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/metabolismo , Nucléolo Celular/metabolismo , Genoma Fúngico , Metilação , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , tRNA Metiltransferases/metabolismo
18.
PLoS Pathog ; 9(6): e1003446, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825946

RESUMO

Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Proteínas de Homeodomínio/imunologia , Lectinas Tipo C/imunologia , Macrófagos Peritoneais/imunologia , Neuropeptídeos/imunologia , Fagocitose/imunologia , Proteínas Tirosina Quinases/imunologia , Actinas/genética , Actinas/imunologia , Actinas/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Candida albicans/metabolismo , Candidíase/genética , Candidíase/metabolismo , Candidíase/patologia , Linhagem Celular , Diglicerídeos/genética , Diglicerídeos/imunologia , Diglicerídeos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fagocitose/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/imunologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
19.
Nat Biotechnol ; 31(4): 335-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23417095

RESUMO

Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeting metabolic pathways to mitochondria can increase production compared with overexpression of the enzymes involved in the same pathways in the cytoplasm. Compartmentalization of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overproducing enzymes involved in only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains revealed that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves greater local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion and reducing the loss of intermediates to competing pathways.


Assuntos
Álcoois/metabolismo , Compartimento Celular , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcoois/química , Butanóis/química , Butanóis/metabolismo , Citoplasma/metabolismo , Fermentação , Engenharia Genética , Pentanóis/química , Pentanóis/metabolismo , Saccharomyces cerevisiae/enzimologia , Frações Subcelulares/enzimologia
20.
Genetics ; 192(4): 1523-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23051644

RESUMO

The connection between genotype and phenotype was assessed by determining the adhesion phenotype for the same mutation in two closely related yeast strains, S288c and Sigma, using two identical deletion libraries. Previous studies, all in Sigma, had shown that the adhesion phenotype was controlled by the filamentation mitogen-activated kinase (fMAPK) pathway, which activates a set of transcription factors required for the transcription of the structural gene FLO11. Unexpectedly, the fMAPK pathway is not required for FLO11 transcription in S288c despite the fact that the fMAPK genes are present and active in other pathways. Using transformation and a sensitized reporter, it was possible to isolate RPI1, one of the modifiers that permits the bypass of the fMAPK pathway in S288c. RPI1 encodes a transcription factor with allelic differences between the two strains: The RPI1 allele from S288c but not the one from Sigma can confer fMAPK pathway-independent transcription of FLO11. Biochemical analysis reveals differences in phosphorylation between the alleles. At the nucleotide level the two alleles differ in the number of tandem repeats in the ORF. A comparison of genomes between the two strains shows that many genes differ in size due to variation in repeat length.


Assuntos
Variação Genética , Glicoproteínas de Membrana/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genoma Fúngico , Sistema de Sinalização das MAP Quinases/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Polimorfismo Genético , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequências de Repetição em Tandem , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...