Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 238: 124633, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31454747

RESUMO

Three different source waters were investigated using virgin and pre-used anion exchange resins, coagulation, and ion exchange combined with coagulation (IEX&Coagulation). The hydrophobicity, size distribution and charge of natural organic matter (NOM) were used to evaluate its removal. Dissolved organic carbon (DOC) removal by pre-used IEX resin was 67-79%. A consistent ratio of different hydrophobicity fractions was found in the removed DOC, while the proportion and quantity of the molecular weight fraction around 1 kDa was important in understanding the treatability of water. For pre-used resin, organic compounds were hypothesised to be restricted to easily accessible exchange sites. Comparatively, virgin resin achieved higher DOC removals (86-89%) as resin fouling was absent. Charge density and the proportion of the hydrophobic fraction were found to be important indicators for the specific disinfection byproduct formation potential (DBP-FP). Treatment of raw water with pre-used resin decreased the specific DBP-FP by between 2 and 43%, while the use of virgin resin resulted in a reduction of between 31 and 63%. The highest water quality was achieved when the combination of IEX and coagulation was used, reducing DOC and the specific DBP-FP well below that seen for either process alone.


Assuntos
Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Resinas de Troca Aniônica/química , Floculação , Interações Hidrofóbicas e Hidrofílicas , Troca Iônica
2.
Water Res ; 146: 256-263, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30278380

RESUMO

Dissolved organic carbon (DOC) removal from a river water source was investigated using ion exchange (IEX), coagulation and membrane filtration. This research linked the variable charge characteristics of the organic compounds present in the source water with removal by IEX and coagulation. The raw water charge density fluctuated considerably (between 5.4 and 10.7 meq mgDOC-1) and controlled removal of the charge loading. Importantly, charge density was not correlated with the organic carbon concentration. The combined IEX and coagulation process reduced the specific DBP-FP (sDBP-FP) of the final water, with values as low as 18 µg mgDOC-1 for both haloacetic acids and trihalomethanes. IEX removed a particular fraction of NOM that 1) enhanced coagulation efficiency, providing increased removal of overall DOC; and 2) enabled coagulation to subsequently remove higher levels of specific components of NOM that have a high DBP-FP. The component of NOM removed by IEX that had a positive impact on coagulation was identified to be charged low molecular weight organic compounds of all hydrophobicity levels, resulting in a reduced specific DBP-FP compared to coagulation alone.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Troca Iônica , Compostos Orgânicos , Trialometanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...