Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(3): 033524, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820017

RESUMO

Final design studies in preparation for manufacturing have been performed for functional components of the vacuum portion of the ITER Low-Field Side Reflectometer (LFSR). These components consist of an antenna array, electron cyclotron heating (ECH) protection mirrors, phase calibration mirrors, and vacuum windows. Evaluation of these components was conducted at the LFSR test facility and DIII-D. The antenna array consists of six corrugated-waveguide antennas for simultaneous profile, fluctuation, and Doppler measurements. A diffraction grating, incorporated into the plasma-facing miter bend, provides protection of sensitive components from stray ECH at 170 GHz. For in situ phase calibration of the LFSR profile reflectometer, an embossed mirror is incorporated into the adjacent miter bend. Measurements of the radiated beam profile indicate that these components have a small, acceptable effect on mode conversion and beam quality. Baseline transmission characteristics of the dual-disk vacuum window are obtained and are used to guide ongoing developments. Preliminary simulations indicate that a surface-relief structure on the window surfaces can greatly improve transmission. The workability of real-time phase measurements was demonstrated on the DIII-D profile reflectometer. The new automated real-time analysis agrees well with the standard post-processing routine.

2.
Rev Sci Instrum ; 89(10): 10B105, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399752

RESUMO

In order to improve both the density and particularly the temporal resolution beyond previous dispersion interferometers (DIs), a heterodyne technique based on an acousto-optic (AO) cell has been added to the DI. A 40 MHz drive frequency for the AO cell allows density fluctuation measurements into the MHz range. A CO2 laser-based heterodyne DI (HDI) installed on DIII-D has demonstrated that the HDI is capable of tracking the density evolution throughout DIII-D discharges, including disruption events and other rapid transient phenomena. The data also show good agreement with independent density measurements obtained with the existing DIII-D two-color interferometer. The HDI line-integrated density resolution sampled over a 1 s interval is ∼9 × 1017 m-2. Density fluctuations induced by MHD instabilities are also successfully measured by the HDI.

3.
Rev Sci Instrum ; 89(10): 10B102, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399936

RESUMO

A full-scale ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been installed and tested on the DIII-D tokamak. In the TIP prototype, a two-color interferometry measurement of line-integrated density is carried out at 10.59 µm and 5.22 µm using a CO2 and quantum cascade laser, respectively, while a separate polarimetry measurement of the plasma-induced Faraday effect is made at 10.59 µm. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system that minimizes noise in the measurement and keeps the diagnostic aligned throughout DIII-D discharges. The measured phase resolution for the polarimeter and interferometer is 0.05° (100 Hz bandwidth) and 1.9° (1 kHz bandwidth), respectively. The corresponding line-integrated density resolution for the vibration-compensated interferometer is δnL = 1.5 × 1018 m-2, and the magnetic field-weighted line-integrated density from the polarimeter is δnBL = 1.5 × 1019 Tm-2. Both interferometer and polarimeter measurements during DIII-D discharges compare well with the expectations based on calculations using Thomson scattering measured density profiles and magnetic equilibrium reconstructions. Additionally, larger bandwidth interferometer measurements show that the diagnostic is a sensitive monitor of core density fluctuations with demonstrated measurements of Alfvén eigenmodes and tearing modes.

4.
Rev Sci Instrum ; 87(12): 123502, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040946

RESUMO

A heterodyne detection scheme is combined with a 10.59 µm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 1017 m-2. Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...