Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0292408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950025

RESUMO

Co-infections are a common reality but understanding how the immune system responds in this context is complex and can be unpredictable. Heligmosomoides bakeri (parasitic roundworm, previously Heligmosomoides polygyrus) and Toxoplasma gondii (protozoan parasite) are well studied organisms that stimulate a characteristic Th2 and Th1 response, respectively. Several studies have demonstrated reduced inflammatory cytokine responses in animals co-infected with such organisms. However, while general cytokine signatures have been examined, the impact of the different cytokine producing lymphocytes on parasite control/clearance is not fully understood. We investigated five different lymphocyte populations (NK, NKT, γδ T, CD4+ T and CD8+ T cells), five organs (small intestine, Peyer's patches, mesenteric lymph nodes, spleen and liver), and 4 cytokines (IFN©, IL-4, IL-10 and IL-13) at two different time points (days 5 and 10 post T. gondii infection). We found that co-infected animals had significantly higher mortality than either single infection. This was accompanied by transient and local changes in parasite loads and cytokine profiles. Despite the early changes in lymphocyte and cytokine profiles, severe intestinal pathology in co-infected mice likely contributed to early mortality due to significant damage by both parasites in the small intestine. Our work demonstrates the importance of taking a broad view during infection research, studying multiple cell types, organs/tissues and time points to link and/or uncouple immunological from pathological findings. Our results provide insights into how co-infection with parasites stimulating different arms of the immune system can lead to drastic changes in infection dynamics.


Assuntos
Coinfecção , Citocinas , Nematospiroides dubius , Toxoplasma , Animais , Coinfecção/imunologia , Coinfecção/parasitologia , Toxoplasma/imunologia , Camundongos , Citocinas/metabolismo , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Infecções por Strongylida/mortalidade , Toxoplasmose/imunologia , Toxoplasmose/mortalidade , Toxoplasmose/complicações , Feminino , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/mortalidade , Toxoplasmose Animal/parasitologia , Baço/imunologia , Baço/patologia , Baço/parasitologia , Carga Parasitária , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Tecido Linfoide/parasitologia
3.
Infect Immun ; 92(3): e0039523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294241

RESUMO

HpARI is an immunomodulatory protein secreted by the intestinal nematode Heligmosomoides polygyrus bakeri, which binds and blocks IL-33. Here, we find that the H. polygyrus bakeri genome contains three HpARI family members and that these have different effects on IL-33-dependent responses in vitro and in vivo, with HpARI1+2 suppressing and HpARI3 amplifying these responses. All HpARIs have sub-nanomolar affinity for mouse IL-33; however, HpARI3 does not block IL-33-ST2 interactions. Instead, HpARI3 stabilizes IL-33, increasing the half-life of the cytokine and amplifying responses to it in vivo. Together, these data show that H. polygyrus bakeri secretes a family of HpARI proteins with both overlapping and distinct functions, comprising a complex immunomodulatory arsenal of host-targeted proteins.


Assuntos
Nematospiroides dubius , Infecções por Strongylida , Camundongos , Animais , Interleucina-33/genética , Citocinas , Imunomodulação , Imunidade
4.
Trends Parasitol ; 39(9): 711-715, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37455169

RESUMO

Student-faculty partnerships can drive innovation in parasitology education and outreach. We provide recommendations for building successful partnerships during the design, implementation, and impact assessment stages. We also introduce a new series of freely available educational and community outreach materials available on a platform that the parasitology community can contribute to.


Assuntos
Parasitologia , Estudantes , Humanos , Parasitologia/educação
5.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
6.
Parasit Vectors ; 16(1): 171, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37246221

RESUMO

BACKGROUND: Heligmosomoides bakeri (often mistaken for Heligmosomoides polygyrus) is a promising model for parasitic nematodes with the key advantage of being amenable to study and manipulation within a controlled laboratory environment. While draft genome sequences are available for this worm, which allow for comparative genomic analyses between nematodes, there is a notable lack of information on its gene expression. METHODS: We generated biologically replicated RNA-seq datasets from samples taken throughout the parasitic life of H. bakeri. RNA from tissue-dwelling and lumen-dwelling worms, collected under a dissection microscope, was sequenced on an Illumina platform. RESULTS: We find extensive transcriptional sexual dimorphism throughout the fourth larval and adult stages of this parasite and identify alternative splicing, glycosylation, and ubiquitination as particularly important processes for establishing and/or maintaining sex-specific gene expression in this species. We find sex-linked differences in transcription related to aging and oxidative and osmotic stress responses. We observe a starvation-like signature among transcripts whose expression is consistently upregulated in males, which may reflect a higher energy expenditure by male worms. We detect evidence of increased importance for anaerobic respiration among the adult worms, which coincides with the parasite's migration into the physiologically hypoxic environment of the intestinal lumen. Furthermore, we hypothesize that oxygen concentration may be an important driver of the worms encysting in the intestinal mucosa as larvae, which not only fully exposes the worms to their host's immune system but also shapes many of the interactions between the host and parasite. We find stage- and sex-specific variation in the expression of immunomodulatory genes and in anthelmintic targets. CONCLUSIONS: We examine how different the male and female worms are at the molecular level and describe major developmental events that occur in the worm, which extend our understanding of the interactions between this parasite and its host. In addition to generating new hypotheses for follow-up experiments into the worm's behavior, physiology, and metabolism, our datasets enable future more in-depth comparisons between nematodes to better define the utility of H. bakeri as a model for parasitic nematodes in general.


Assuntos
Anti-Helmínticos , Nematoides , Parasitos , Trichostrongyloidea , Animais , Masculino , Feminino , Caracteres Sexuais , Nematoides/genética , Larva/genética
7.
Front Immunol ; 13: 1020056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569914

RESUMO

Introduction: Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results: Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion: To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.


Assuntos
Nematospiroides dubius , Humanos , Camundongos , Animais , Cicatriz , Imunidade , Granuloma , Inflamação
9.
Eur J Immunol ; 50(8): 1167-1173, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32311083

RESUMO

Disrupting or harnessing immune suppression is leading to new therapeutic avenues in a number of immune-related diseases. Understanding the suppressive functions of regulatory T cells (Tregs) in different environments is therefore key. Parasitic worms are strong inducers of Tregs and previous research has suggested that parasite-induced Tregs are stronger suppressors than naïve Tregs. In strains susceptible to the intestinal worm Heligmosomoides polygyrus, like C57BL/6 mice, it has been hypothesized that increased Treg suppression downregulates both Th1 and Th2 responses, leading to chronic infections and high worm burden. Here, we show that the suppressive capacity of Tregs is no different between cells from infected and/or naive animals. In vitro suppression induced by CD4+ CD25+ Tregs (Peyers' Patches or the mesenteric lymph nodes), isolated early (day 7, tissue dwelling phase) or late (day 21, luminal phase) during infection was similar to that induced by cells from naïve animals. Suppression was CTLA-4 dependent in Tregs from acute but not chronic infection or in Tregs from naïve animals. This highlights the versatility of Tregs and the importance of extensive Treg characterization prior to potential in vivo manipulation of this cell type.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Tolerância Imunológica , Nematospiroides dubius , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígeno CTLA-4/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
10.
J Leukoc Biol ; 108(1): 83-91, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170880

RESUMO

Eosinophils are traditionally associated with allergic and parasitic inflammation. More recently, eosinophils have also been shown to have roles in diverse processes including development, intestinal health, thymic selection, and B-cell survival with the majority of these insights being derived from murine models and in vitro assays. Despite this, tools to measure the dynamic activity of eosinophils in situ have been lacking. Intravital microscopy is a powerful tool that enables direct visualization of leukocytes and their dynamic behavior in real-time in a wide range of processes in both health and disease. Until recently eosinophil researchers have not been able to take full advantage of this technology due to a lack of tools such as genetically encoded reporter mice. This mini-review examines the history of intravital microscopy with a focus on eosinophils. The development and use of eosinophil-specific Cre (EoCre) mice to create GFP and tdTomato fluorescent reporter animals is also described. Genetically encoded eosinophil reporter mice combined with intravital microscopy provide a powerful tool to add to the toolbox of technologies that will help us unravel the mysteries still surrounding this cell.


Assuntos
Eosinófilos/citologia , Microscopia Intravital , Animais , Ceco/citologia , Corantes Fluorescentes/metabolismo , Genes Reporter , Intestino Delgado/citologia , Pulmão/citologia , Linfonodos/citologia , Camundongos Endogâmicos C57BL , Músculos/citologia
11.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285249

RESUMO

Granuloma formation is a key host immune response generated to confine invading pathogens and limit extensive host damage. It consists of an accumulation of host immune cells around a pathogen. This host response has been extensively studied in the context of inflammatory diseases. However, there is much less known about Th2-type granulomas generated in response to parasitic worms. Based on in vitro data, innate immune cells within the granuloma are thought to immobilize and kill parasites but also act to repair damaged tissue. Understanding this dual function is key. The two billion people and many livestock/wild animals infected with helminths demonstrate that granulomas are not effective at clearing infection. However, the lack of high mortality highlights their importance in ensuring that parasite migration/tissue damage is restricted and wound healing is effective. In this review, we define two key cellular players (macrophages and eosinophils) and their associated molecular players involved in Th2 granuloma function. To date, the underlying mechanisms remain poorly understood, which is in part due to a lack of conclusive studies. Most have been performed in vitro rather than in vivo, using cells that have not been obtained from granulomas. Experiments using genetically modified mouse strains and/or antibody/chemical-mediated cell depletion have also generated conflicting results depending on the model. We discuss the caveats of previous studies and the new tools available that will help fill the gaps in our knowledge and allow a better understanding of the balance between immune killing and healing.


Assuntos
Eosinófilos/imunologia , Granuloma/imunologia , Helmintíase/imunologia , Helmintos/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Células Th2/imunologia , Animais , Comunicação Celular , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Eosinófilos/parasitologia , Eosinófilos/patologia , Granuloma/parasitologia , Granuloma/patologia , Helmintíase/parasitologia , Helmintíase/patologia , Helmintos/crescimento & desenvolvimento , Helmintos/patogenicidade , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata , Mucosa Intestinal/patologia , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Células Th2/parasitologia , Células Th2/patologia , Cicatrização/imunologia
12.
Cytokine ; 108: 179-181, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684754

RESUMO

IL-21 is a much studied cytokine that has been implicated in the regulation of TH1, TH2, TH17 and regulatory immune responses; its signalling is a promising therapeutic target for autoimmune, inflammatory and infectious diseases. Despite its biological importance, measuring IL-21 reliably has proved difficult. ELISAs are commonly used to measure cytokines in various biological samples. However, results obtained are only as good as the quality of the sample. Here, we show that when using fresh samples, a significant increase in IL-21 was measured in the intestinal homogenate of mice infected with the intestinal worm Heligmosomoides polygyrus. This difference disappeared when samples were frozen in either liquid nitrogen for two days or at -80 °C for three weeks, with levels in both naïve and infected animals decreasing. This was not observed for the IL-13 cytokine, where freezing had no impact on levels measured. Our study highlights the importance of sample storage to measuring biomarkers. Since modulating IL-21 signalling is such an important potential therapeutic avenue, accurately measuring the levels of this cytokine is key to assessing its role in various research models and clinical settings.


Assuntos
Congelamento , Helmintíase/imunologia , Interleucinas/análise , Enteropatias Parasitárias/imunologia , Manejo de Espécimes/métodos , Extratos de Tecidos/análise , Animais , Biomarcadores/análise , Feminino , Intestinos/imunologia , Intestinos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Nematospiroides dubius
13.
Trends Parasitol ; 33(2): 113-127, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988095

RESUMO

Toxoplasma gondii is an intensely studied protozoan parasite. It is also used as a model organism to research additional clinically relevant human and veterinary parasites due to ease of in vitro culture and genetic manipulation. Recently, it has been developed as a model of inflammatory bowel disease, due to their similar pathologies. However, researchers vary widely in how they use T. gondii, which makes study comparisons and interpretation difficult. The aim of this review is to provide researchers with a tool to: (i) determine the appropriateness of the different T. gondii models to their research, (ii) interpret results from the wide range of study conditions, and (iii) consider new advances in technology which could improve or refine their experimental setup.


Assuntos
Modelos Biológicos , Pesquisa/tendências , Toxoplasma/fisiologia , Toxoplasmose/patologia , Animais , Humanos , Tecnologia/tendências
14.
PLoS Pathog ; 11(4): e1004646, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25856431

RESUMO

The impact of the microbiota on the immune status of its host is a source of intense research and publicity. In comparison, the effect of arthropod microbiota on vector-borne infectious diseases has received little attention. A better understanding of the vector microbiota in relation to mammalian host immune responses is vital, as it can lead to strategies that affect transmission and improve vaccine design in a field of research where few vaccines exist and effective treatment is rare. Recent demonstrations of how microbiota decrease pathogen development in arthropods, and thus alter vector permissiveness to vector-borne diseases (VBDs), have led to renewed interest. However, hypotheses on the interactions between the arthropod-derived microbiota and the mammalian hosts have yet to be addressed. Advances in DNA sequencing technology, increased yield and falling costs, mean that these studies are now feasible for many microbiologists and entomologists. Here, we distill current knowledge and put forward key questions and experimental designs to shed light on this burgeoning research topic.


Assuntos
Vetores Artrópodes/microbiologia , Artrópodes/microbiologia , Transmissão de Doença Infecciosa , Microbiota , Animais , Humanos
15.
J Acquir Immune Defic Syndr ; 68(2): 128-32, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25415293

RESUMO

Malaria-specific immune responses are altered in HIV/malaria-coinfected individuals and are associated with higher parasite burdens and more severe clinical disease. Monocyte/macrophage phagocytosis is a major mechanism of malaria parasite clearance. We hypothesized that phagocytosis of malaria-parasitized erythrocytes is impaired in coinfected individuals and could contribute to the increased parasite burdens observed. We show that nonopsonic phagocytosis of Plasmodium falciparum parasitized erythrocytes is impaired in monocytes isolated from HIV-infected individuals. The observed defects in phagocytic capacity were rescued after 6 months of antiretroviral therapy, demonstrating the importance of HIV treatment and immune reconstitution in the context of coinfection.


Assuntos
Infecções por HIV/complicações , Malária Falciparum/imunologia , Monócitos/imunologia , Fagocitose , Plasmodium falciparum/imunologia , Adulto , Idoso , Antirretrovirais/uso terapêutico , Células Cultivadas , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
J Acquir Immune Defic Syndr ; 63(2): 161-7, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23314411

RESUMO

BACKGROUND: The Tim-3 receptor has been implicated as a negative regulator of adaptive immune responses and has been linked to T-cell dysfunction in chronic viral infections, such as HIV. Blocking Tim-3 has been proposed as a potential therapeutic intervention in HIV infection. However, a more detailed characterization of Tim-3 expression in the presence of HIV is required before such strategies can be considered. METHODS: In this study, we investigate Tim-3 expression on innate immune cell subsets in chronic HIV-infected individuals pretherapy and posttherapy. RESULTS: We report that, pretherapy, HIV infection is associated with elevated levels of Tim-3 on resting innate lymphocytes (NK, NKT, and γδ T cells), but not resting monocytes. In the absence of HIV infection, stimulation with an inflammatory stimulus resulted in decreased Tim-3 on monocytes and increased Tim-3 on NK, NKT, and γδ T cells. However, innate cells from HIV-infected donors were significantly less responsive to stimulation. Six months of combination antiretroviral therapy (cART) restored Tim-3 levels on resting NK cells but not NKT or γδ T cells. The responses of all subsets to inflammatory stimuli were restored to some extent with cART but only reached HIV-negative control levels in monocytes and NK cells. DISCUSSION: These results demonstrate that, during HIV infection, Tim-3 expression on innate cells is dysregulated and that this dysregulation is only partially restored after 6 months of cART. Our findings suggest that Tim-3 is differentially regulated on innate immune effector cells, and have direct implications for strategies designed to block Tim-3-ligand interactions.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Membrana/biossíntese , Células T Matadoras Naturais/imunologia , Subpopulações de Linfócitos T/imunologia , Imunidade Adaptativa/genética , Antígenos de Superfície/biossíntese , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Antígeno CD56/biossíntese , Infecções por HIV/tratamento farmacológico , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Inflamação , Células Matadoras Naturais/metabolismo , Contagem de Linfócitos , Monócitos/imunologia , Monócitos/metabolismo , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/análise , Subpopulações de Linfócitos T/metabolismo
17.
AIDS ; 27(3): 325-35, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23291537

RESUMO

OBJECTIVE: Malaria and HIV-1 adversely interact, with HIV-positive individuals suffering higher parasite burdens and worse clinical outcomes. However, the mechanisms underlying these disease interactions are unclear. We hypothesized that HIV coinfection impairs the innate immune response to malaria, and that combination antiretroviral therapy (cART) may restore this response. Our aim was to examine the innate inflammatory response of natural killer (NK), natural killer T (NKT), and γδ T-cells isolated from the peripheral blood of HIV-infected therapy-naive donors to malaria parasites, and determine the effect of cART on these responses. METHODS: Freshly isolated peripheral blood mononuclear cells from 25 HIV-infected individuals pre-cART (month 0) and post-cART (months 3 and 6), and HIV-negative individuals at matched time-points, were cultured in the presence of Plasmodium falciparum parasitized erythrocytes. Supernatants and cells were collected to assess cytokine production and phenotypic changes. RESULTS: Compared to HIV-negative participants, NKT, NK, and γδ T-cell subsets from participants with chronic HIV infection showed marked differences, including decreased production of interferon γ (IFNγ) and tumor necrosis factor (TNF) in response to malaria parasites. IFNγ production was linked to interleukin-18 receptor (IL-18R) expression in all three cell types studied. Six months of cART provided partial cellular reconstitution but had no effect on IL-18R expression, or IFNγ and TNF production. CONCLUSION: These data suggest that HIV infection impairs the inflammatory response of innate effector cells to malaria, and that the response is not fully restored within 6 months of cART. This may contribute to higher parasite burdens and ineffective immune responses, and have implications for vaccination initiatives in coinfected individuals.


Assuntos
Fármacos Anti-HIV/farmacologia , Eritrócitos/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Plasmodium falciparum/imunologia , Células Cultivadas , Coinfecção , Quimioterapia Combinada , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon gama/biossíntese , Interleucina-18/imunologia , Leucócitos Mononucleares , Ativação Linfocitária , Malária , Malária Falciparum , Masculino , Plasmodium falciparum/patogenicidade , Receptores de Interleucina-18/imunologia
18.
J Exp Med ; 207(11): 2331-41, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20876311

RESUMO

Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3⁻ T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3⁻ splenocytes from Foxp3-green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) ß receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-ßRII cells and was abolished by the TGF-ß signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus-infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-ß did not recognize HES, whereas antisera that inhibited HES did not affect TGF-ß. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite's immunological relationship with the host.


Assuntos
Antígenos de Helmintos/imunologia , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica/imunologia , Nematospiroides dubius/imunologia , Transdução de Sinais/imunologia , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Antígenos de Helmintos/metabolismo , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Dioxóis/farmacologia , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Nematospiroides dubius/metabolismo , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/imunologia , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/imunologia , Proteína Smad3/metabolismo , Infecções por Strongylida/genética , Infecções por Strongylida/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
19.
J Immunol ; 185(9): 5495-502, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20876354

RESUMO

Pathogen sensing by the inflammasome activates inflammatory caspases that mediate inflammation and cell death. Caspase-12 antagonizes the inflammasome and NF-κB and is associated with susceptibility to bacterial sepsis. A single-nucleotide polymorphism (T(125)C) in human Casp12 restricts its expression to Africa, Southeast Asia, and South America. Here, we investigated the role of caspase-12 in the control of parasite replication and pathogenesis in malaria and report that caspase-12 dampened parasite clearance in blood-stage malaria and modulated susceptibility to cerebral malaria. This response was independent of the caspase-1 inflammasome, as casp1(-/-) mice were indistinguishable from wild-type animals in response to malaria, but dependent on enhanced NF-κB activation. Mechanistically, caspase-12 competed with NEMO for association with IκB kinase-α/ß, effectively preventing the formation of the IκB kinase complex and inhibiting downstream transcriptional activation by NF-κB. Systemic inhibition of NF-κB or Ab neutralization of IFN-γ reversed the increased resistance of casp12(-/-) mice to blood-stage malaria infection.


Assuntos
Caspase 12/imunologia , Inflamação/imunologia , Malária/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Animais , Caspase 12/genética , Citocinas/biossíntese , Citocinas/imunologia , Ativação Enzimática/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Predisposição Genética para Doença , Humanos , Inflamação/genética , Malária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
20.
Am J Trop Med Hyg ; 83(1): 69-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20595480

RESUMO

Severe malaria represents a clinical spectrum of disease. We propose that innate immune inflammatory responses to malaria play key roles in the pathogenesis and clinical outcomes of distinct severe malaria syndromes. To investigate this hypothesis, mice deficient in IRAK4, central to Toll-like receptor (TLR)-mediated signaling, were studied in two experimental models of malaria: Plasmodium berghei (PbA) and Plasmodium chabaudi (PccAS). Irak4(-/-)mice had decreased pro-inflammatory cytokine production during infection in both models. However, animals were relatively protected from PbA-associated symptoms compared with wild-type mice, whereas Irak4(-/-) animals were more susceptible to PccAS-associated disease. These results show that IRAK4-mediated innate immune inflammatory responses play critical roles in divergent clinical outcomes in murine malaria models. As such, integrated approaches, using more than one model, are required to fully understand the parasite/host interactions that characterize severe malaria, and more importantly, to fully assess the effect of adjunctive therapies targeting innate immune responses to malaria.


Assuntos
Imunidade Inata/imunologia , Quinases Associadas a Receptores de Interleucina-1/imunologia , Malária Falciparum/imunologia , Malária/imunologia , Receptores Toll-Like/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...