Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6658): 677-681, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561852

RESUMO

Moiré superlattices in twisted two-dimensional materials have generated tremendous excitement as a platform for achieving quantum properties on demand. However, the moiré pattern is highly sensitive to the interlayer atomic registry, and current assembly techniques suffer from imprecise control of the average twist angle, spatial inhomogeneity in the local twist angle, and distortions caused by random strain. We manipulated the moiré patterns in hetero- and homobilayers through in-plane bending of monolayer ribbons, using the tip of an atomic force microscope. This technique achieves continuous variation of twist angles with improved twist-angle homogeneity and reduced random strain, resulting in moiré patterns with tunable wavelength and ultralow disorder. Our results may enable detailed studies of ultralow-disorder moiré systems and the realization of precise strain-engineered devices.

2.
Nano Lett ; 23(8): 3137-3143, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37036942

RESUMO

Twisted van der Waals multilayers are widely regarded as a rich platform to access novel electronic phases thanks to the multiple degrees of freedom available for controlling their electronic and chemical properties. Here, we propose that the stacking domains that form naturally due to the relative twist between successive layers act as an additional "knob" for controlling the behavior of these systems and report the emergence and engineering of stacking domain-dependent surface chemistry in twisted few-layer graphene. Using mid-infrared near-field optical microscopy and atomic force microscopy, we observe a selective adhesion of metallic nanoparticles and liquid water at the domains with rhombohedral stacking configurations of minimally twisted double bi- and trilayer graphene. Furthermore, we demonstrate that the manipulation of nanoparticles located at certain stacking domains can locally reconfigure the moiré superlattice in their vicinity at the micrometer scale. Our findings establish a new approach to controlling moiré-assisted chemistry and nanoengineering.

3.
Sci Adv ; 7(10)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33658203

RESUMO

Broken symmetries induce strong even-order nonlinear optical responses in materials and at interfaces. Unlike conventional covalently bonded nonlinear crystals, van der Waals (vdW) heterostructures feature layers that can be stacked at arbitrary angles, giving complete control over the presence or lack of inversion symmetry at a crystal interface. Here, we report highly tunable second harmonic generation (SHG) from nanomechanically rotatable stacks of bulk hexagonal boron nitride (BN) crystals and introduce the term twistoptics to describe studies of optical properties in twistable vdW systems. By suppressing residual bulk effects, we observe SHG intensity modulated by a factor of more than 50, and polarization patterns determined by moiré interface symmetry. Last, we demonstrate greatly enhanced conversion efficiency in vdW vertical superlattice structures with multiple symmetry-broken interfaces. Our study paves the way for compact twistoptics architectures aimed at efficient tunable frequency conversion and demonstrates SHG as a robust probe of buried vdW interfaces.

4.
Nano Lett ; 21(4): 1688-1693, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586445

RESUMO

Graphene-based heterostructures display a variety of phenomena that are strongly tunable by electrostatic local gates. Monolayer graphene (MLG) exhibits tunable surface plasmon polaritons, as revealed by scanning nano-infrared experiments. In bilayer graphene (BLG), an electronic gap is induced by a perpendicular displacement field. Gapped BLG is predicted to display unusual effects such as plasmon amplification and domain wall plasmons with significantly larger lifetime than MLG. Furthermore, a variety of correlated electronic phases highly sensitive to displacement fields have been observed in twisted graphene structures. However, applying perpendicular displacement fields in nano-infrared experiments has only recently become possible [Li, H.; Nano Lett. 2020, 20, 3106-3112]. In this work, we fully characterize two approaches to realizing nano-optics compatible top gates: bilayer MoS2 and MLG. We perform nano-infrared imaging on both types of structures and evaluate their strengths and weaknesses. Our work paves the way for comprehensive near-field experiments of correlated phenomena and plasmonic effects in graphene-based heterostructures.

5.
Nat Commun ; 12(1): 242, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431846

RESUMO

The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moiré superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moiré metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.1 meV/atom scale, outperforming the gold-standard of quantum chemistry. Through studying the shapes of moiré domains with numerous nano-imaging techniques, and correlating with multi-scale modelling, we assess and refine first-principle models for the interlayer interaction. We document the prowess of moiré metrology for three representative twisted systems: bilayer graphene, double bilayer graphene and H-stacked MoSe2/WSe2. Moiré metrology establishes sought after experimental benchmarks for interlayer interaction, thus enabling accurate modelling of twisted multilayers.

6.
Nat Mater ; 19(10): 1068-1073, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661380

RESUMO

The possibility of confining interlayer excitons in interfacial moiré patterns has recently gained attention as a strategy to form ordered arrays of zero-dimensional quantum emitters and topological superlattices in transition metal dichalcogenide heterostructures. Strain is expected to play an important role in the modulation of the moiré potential landscape, tuning the array of quantum dot-like zero-dimensional traps into parallel stripes of one-dimensional quantum wires. Here, we present real-space imaging of unstrained zero-dimensional and strain-induced one-dimensional moiré patterns along with photoluminescence measurements of the corresponding excitonic emission from WSe2/MoSe2 heterobilayers. Whereas excitons in zero-dimensional moiré traps display quantum emitter-like sharp photoluminescence peaks with circular polarization, the photoluminescence emission from excitons in one-dimensional moiré potentials shows linear polarization and two orders of magnitude higher intensity. These results establish strain engineering as an effective method to tailor moiré potentials and their optoelectronic response on demand.

8.
Nat Nanotechnol ; 15(7): 580-584, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32572229

RESUMO

Moiré superlattices in van der Waals heterostructures have given rise to a number of emergent electronic phenomena due to the interplay between atomic structure and electron correlations. Indeed, electrons in these structures have been recently found to exhibit a number of emergent properties that the individual layers themselves do not exhibit. This includes superconductivity1,2, magnetism3, topological edge states4,5, exciton trapping6 and correlated insulator phases7. However, the lack of a straightforward technique to characterize the local structure of moiré superlattices has thus far impeded progress in the field. In this work we describe a simple, room-temperature, ambient method to visualize real-space moiré superlattices with sub-5-nm spatial resolution in a variety of twisted van der Waals heterostructures including, but not limited to, conducting graphene, insulating boron nitride and semiconducting transition metal dichalcogenides. Our method uses piezoresponse force microscopy, an atomic force microscope modality that locally measures electromechanical surface deformation. We find that all moiré superlattices, regardless of whether the constituent layers have inversion symmetry, exhibit a mechanical response to out-of-plane electric fields. This response is closely tied to flexoelectricity wherein electric polarization and electromechanical response is induced through strain gradients present within moiré superlattices. Therefore, moiré superlattices of two-dimensional materials manifest themselves as an interlinked network of polarized domain walls in a non-polar background matrix.

9.
Nat Nanotechnol ; 14(11): 1029-1034, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31570805

RESUMO

In van der Waals (vdW) heterostructures consisting of atomically thin crystals layered on top of one another, lattice mismatch and rotation between the layers can result in long-wavelength moiré superlattices. These moiré patterns can drive notable band structure reconstruction of the composite material, leading to a wide range of emergent phenomena including superconductivity1-3, magnetism4, fractional Chern insulating states5 and moiré excitons6-9. Here, we investigate devices consisting of monolayer graphene encapsulated between two crystals of boron nitride (BN), in which the rotational alignment of all three components is controlled. We find that bandgaps in the graphene arising from perfect rotational alignment with both BN layers can be modified considerably depending on whether the relative orientation of the two BN layers is 0° or 60°, suggesting a tunable transition between the absence or presence of inversion symmetry in the heterostructure. Small deviations (<1°) from perfect alignment of all three layers leads to coexisting long-wavelength moiré potentials, resulting in a highly reconstructed graphene band structure featuring multiple secondary Dirac points. Our results demonstrate that the interplay between multiple moiré patterns can be utilized to controllably modify the symmetry and electronic properties of the composite heterostructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...