Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 308: 110792, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034860

RESUMO

Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-ß-xylanase and six ß-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a ß-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.


Assuntos
Endo-1,4-beta-Xilanases/genética , Genes de Plantas , Hordeum/genética , Proteínas de Plantas/genética , Xilosidases/genética , Sequência de Aminoácidos , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Perfilação da Expressão Gênica , Hordeum/enzimologia , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Análise Espaço-Temporal , Xilosidases/química , Xilosidases/metabolismo
2.
J Agric Food Chem ; 67(22): 6432-6444, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095381

RESUMO

Liquid feeding strategies have been devised with the aim of enhancing grain nutrient availability for livestock. It is characterized by a steeping/soaking period that softens the grains and initiates mobilization of seed storage reserves. The present study uses 2D gel-based proteomics to investigate the role of proteolysis and reduction by thioredoxins over a 48 h steeping period by monitoring protein abundance dynamics in barley-based liquid feed samples supplemented with either protease inhibitors or NADPH-dependent thioredoxin reductase/thioredoxin (NTR/Trx). Several full-length storage proteins were only identified in the water-extractable fraction of feed containing protease inhibitors, illustrating significant inhibition of proteolytic activities arising during the steeping period. Application of functional NTR/Trx to liquid feed reductively increased the solubility of known and potentially new Trx-target proteins, e.g., outer membrane protein X, and their susceptibility to proteolysis. Thus, the NTR/Trx system exhibits important potential as a feed additive to enhance nutrient digestibility in monogastric animals.


Assuntos
Ração Animal/análise , Hordeum/enzimologia , Proteínas de Plantas/química , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Eletroforese em Gel Bidimensional , Manipulação de Alimentos , Hordeum/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Proteômica , Sementes/química , Sementes/enzimologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
3.
Plant Cell Environ ; 41(6): 1311-1330, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29385242

RESUMO

Although the physiological consequences of plant growth under saline conditions have been well described, understanding the core mechanisms conferring plant salt adaptation has only started. We target the root plasma membrane proteomes of two barley varieties, cvs. Steptoe and Morex, with contrasting salinity tolerance. In total, 588 plasma membrane proteins were identified by mass spectrometry, of which 182 were either cultivar or salinity stress responsive. Three candidate proteins with increased abundance in the tolerant cv. Morex were involved either in sterol binding (a GTPase-activating protein for the adenosine diphosphate ribosylation factor [ZIGA2], and a membrane steroid binding protein [MSBP]) or in phospholipid synthesis (phosphoethanolamine methyltransferase [PEAMT]). Overexpression of barley MSBP conferred salinity tolerance to yeast cells, whereas the knock-out of the heterologous AtMSBP1 increased salt sensitivity in Arabidopsis. Atmsbp1 plants showed a reduced number of lateral roots under salinity, and root-tip-specific expression of barley MSBP in Atmsbp1 complemented this phenotype. In barley, an increased abundance of MSBP correlates with reduced root length and lateral root formation as well as increased levels of auxin under salinity being stronger in the tolerant cv. Morex. Hence, we concluded the involvement of MSBP in phytohormone-directed adaptation of root architecture in response to salinity.


Assuntos
Membrana Celular/metabolismo , Hordeum/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Proteoma/metabolismo , Proteômica/métodos , Salinidade , Ácido Abscísico/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cromatografia de Fase Reversa , Genótipo , Hordeum/efeitos dos fármacos , Hordeum/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sesquiterpenos/metabolismo , Cloreto de Sódio/farmacologia , Esteroides/metabolismo , Estresse Fisiológico/efeitos dos fármacos
4.
Plant Physiol Biochem ; 118: 71-76, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28622601

RESUMO

The barley aleurone layer is an established model system for studying phytohormone signalling, enzyme secretion and programmed cell death during seed germination. Most analyses performed on the aleurone layer are end-point assays based on cell extracts, meaning each sample is only analysed at a single time point. By immobilising barley aleurone layer tissue on polydimethylsiloxane pillars in the lid of a multiwell plate, continuous monitoring of living tissue is enabled using multiple non-destructive assays in parallel. Cell viability and menadione reducing capacity were monitored in the same aleurone layer samples over time, in the presence or absence of plant hormones and other effectors. The system is also amenable to transient gene expression by particle bombardment, with simultaneous monitoring of cell death. In conclusion, the easy to handle and efficient experimental setup developed here enables continuous monitoring of tissue samples, parallelisation of assays and single cell analysis, with potential for time course studies using any plant tissue that can be immobilised, for example leaves or epidermal peels.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Hordeum/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo
5.
J Proteomics ; 169: 153-164, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28323242

RESUMO

The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. BIOLOGICAL SIGNIFICANCE: The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications.


Assuntos
Endo-1,4-beta-Xilanases/análise , Hordeum/microbiologia , Proteômica/métodos , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia
6.
Anal Biochem ; 515: 1-8, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27641112

RESUMO

Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts.


Assuntos
Ácido Abscísico/metabolismo , Germinação/fisiologia , Giberelinas/metabolismo , Hordeum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Oxirredução
7.
New Phytol ; 211(4): 1255-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159614

RESUMO

Low concentration of zinc (Zn) in the endosperm of cereals is a major factor contributing to Zn deficiency in human populations. We have investigated how combined Zn and nitrogen (N) fertilization affects the speciation and localization of Zn in durum wheat (Triticum durum). Zn-binding proteins were analysed with liquid chromatography ICP-MS and Orbitrap MS(2) , respectively. Laser ablation ICP-MS with simultaneous Zn, sulphur (S) and phosphorus (P) detection was used for bioimaging of Zn and its potential ligands. Increasing the Zn and N supply had a major impact on the Zn concentration in the endosperm, reaching concentrations higher than current breeding targets. The S concentration also increased, but S was only partly co-localized with Zn. The mutual Zn and S enrichment was reflected in substantially more Zn bound to small cysteine-rich proteins (apparent size 10-30 kDa), whereas the response of larger proteins (apparent size > 50 kDa) was only modest. Most of the Zn-responsive proteins were associated with redox- and stress-related processes. This study offers a methodological platform to deepen the understanding of processes behind endosperm Zn enrichment. Novel information is provided on how the localization and speciation of Zn is modified during Zn biofortification of grains.


Assuntos
Estado Nutricional , Sementes/metabolismo , Triticum/metabolismo , Zinco/metabolismo , Endosperma/metabolismo , Espectrometria de Massas , Nitrogênio/metabolismo , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Enxofre/metabolismo
8.
J Proteome Res ; 15(4): 1151-67, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928395

RESUMO

Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including ß-1,4-xylanases, that are in turn inhibited by plant xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC-MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment.


Assuntos
Proteínas de Bactérias/análise , Grão Comestível/metabolismo , Endo-1,4-beta-Xilanases/análise , Proteínas Fúngicas/análise , Hordeum/metabolismo , Proteínas de Plantas/análise , Proteínas de Bactérias/metabolismo , Grão Comestível/microbiologia , Eletroforese em Gel Bidimensional , Endo-1,4-beta-Xilanases/metabolismo , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/metabolismo , Hordeum/microbiologia , Metaboloma , Consórcios Microbianos/fisiologia , Microbiota/fisiologia , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
9.
Biochim Biophys Acta ; 1864(8): 974-82, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26876537

RESUMO

Thioredoxins are nearly ubiquitous disulfide reductases involved in a wide range of biochemical pathways in various biological systems, and also implicated in numerous biotechnological applications. Plants uniquely synthesize an array of thioredoxins targeted to different cell compartments, for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses on occurrence, reaction mechanisms, specificity, target protein identification, three-dimensional structure and various applications. The aim is to provide a general background as well as an update covering the most recent findings. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.


Assuntos
Germinação/fisiologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Tiorredoxina h/metabolismo , NADP/metabolismo , Oxirredução , Tiorredoxina Dissulfeto Redutase/metabolismo
10.
J Sci Food Agric ; 95(1): 141-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24740860

RESUMO

BACKGROUND: Cereal seed germination involves mobilization of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellin produced by the embryo the aleurone layer synthesizes hydrolases that are secreted to the endosperm for degradation of storage products. In this study analysis of intracellular protein accumulation and release from barley aleurone layers is presented for the important enzymes in starch degradation: α-amylase and limit dextrinase (LD). RESULTS: Proteins were visualized by immunoblotting in aleurone layers and culture supernatants from dissected aleurone layers incubated up to 72 h with either gibberellic acid (GA), abscisic acid (ABA) or salicylic acid (SA). The results show that α-amylase is secreted from aleurone layer treated with GA soon after synthesis but the release of LD to culture supernatants was significantly delayed and coincided with a general loss of proteins from aleurone layers. CONCLUSIONS: Release of LD was found to differ from that of amylase and was suggested to depend on programmed cell death (PCD). Despite detection of intracellular amylase in untreated aleurone layers or aleurone layers treated with ABA or SA, α-amylase was not released from these samples. Nevertheless, the release of α-amylase was observed from aleurone layers treated with GA+ABA or GA+SA.


Assuntos
Endosperma/enzimologia , Glicosídeo Hidrolases/análise , Hordeum/enzimologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/farmacologia , alfa-Amilases/análise , Ácido Abscísico/farmacologia , Eletroforese em Gel de Poliacrilamida , Endosperma/química , Endosperma/efeitos dos fármacos , Giberelinas/farmacologia , Glicosídeo Hidrolases/metabolismo , Hordeum/ultraestrutura , Proteínas de Plantas/análise , alfa-Amilases/metabolismo
11.
J Proteome Res ; 13(5): 2696-703, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24654981

RESUMO

Hydrophilic liquid chromatography (HILIC) is used extensively as a sample preparation step for glycopeptide enrichment in proteome research. Here, we have applied cotton wool and a zwitterionic HILIC (ZIC-HILIC) resin in solid-phase extraction microcolumns to provide a higher loading capacity and broader specificity for glycopeptide enrichment. This strategy was applied to tryptic digests of wheat flour albumin extracts followed by simulataneous site-specific (18)O labeling and deglycosylation using peptide-N-glycosidase A (PNGase A) in H(2)(18)O. Subsequent LC-MS/MS analysis allowed for assignment of 78 N-glycosylation sites in 67 albumin proteins. Bioinformatic analysis revealed that several of the identified glycoproteins show sequence similarity to known food allergens. In addition, the potential impact of some of the identified glycoproteins on wheat beer quality is discussed.


Assuntos
Albuminas/metabolismo , Cromatografia Líquida/métodos , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida/instrumentação , Fibra de Algodão , Farinha/análise , Glicopeptídeos/química , Glicosilação , Dados de Sequência Molecular , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Extração em Fase Sólida , Espectrometria de Massas em Tandem
12.
Plant Physiol ; 164(2): 951-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24344171

RESUMO

The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endosperma/metabolismo , Giberelinas/farmacologia , Glicoproteínas/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Hordeum/metabolismo , Proteoma/metabolismo , Tunicamicina/farmacologia , Morte Celular/efeitos dos fármacos , Extratos Celulares , Análise por Conglomerados , Endosperma/citologia , Endosperma/efeitos dos fármacos , Espaço Extracelular/metabolismo , Fluorescência , Glicosilação/efeitos dos fármacos , Hordeum/citologia , Hordeum/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Biológicos , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Proteômica , Coloração e Rotulagem , alfa-Amilases/biossíntese
13.
Proteins ; 82(4): 607-19, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24123219

RESUMO

The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer of reducing equivalents from NADPH to Trx via a tightly NTR-bound flavin. Here, interactions between NTR and Trx are predicted by molecular modelling of the barley NTR:Trx complex (HvNTR2:HvTrxh2) and probed by site directed mutagenesis. Enzyme kinetics analysis reveals mutants in a loop of the flavin adenine dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD- and NADPH-binding domains as supported by our experiments. Overall, the findings suggest that NTR:Trx interactions in different biological systems are fine-tuned by multiple intermolecular contacts.


Assuntos
Arabidopsis/enzimologia , Escherichia coli/enzimologia , Hordeum/enzimologia , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADP/química , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
Methods Mol Biol ; 1072: 677-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136556

RESUMO

Thioredoxins (Trx) are small redox proteins that reduce disulfide bonds in various target proteins and maintain cellular thiol redox control. Here, a thiol-specific labeling and affinity enrichment approach for identification and relative quantification of Trx target disulfides in complex protein extracts is described. The procedure utilizes the isotope-coded affinity tag (ICAT) reagents containing a thiol reactive iodoacetamide group and a biotin affinity tag to target peptides containing reduced cysteine residues. The identification of substrates for Trx and the extent of target disulfide reduction is determined by LC-MS/MS-based quantification of tryptic peptides labeled with "light" ((12)C) and "heavy" ((13)C) ICAT reagents. The methodology can be adapted to monitor the effect of different reductants or oxidants on the redox status of thiol/disulfide proteomes in biological systems.


Assuntos
Dissulfetos/metabolismo , Marcação por Isótopo/métodos , Tiorredoxinas/metabolismo , Avidina/metabolismo , Cátions , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Cromatografia Líquida , Indicadores e Reagentes , Espectrometria de Massas , Peptídeos/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Tripsina/metabolismo
15.
Front Plant Sci ; 4: 151, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734159

RESUMO

Thioredoxin (Trx) reduces disulfide bonds and play numerous important functions in plants. In cereal seeds, cytosolic h-type Trx facilitates the release of energy reserves during the germination process and is recycled by NADPH-dependent Trx reductase. This review presents a summary of the research conducted during the last 10 years to elucidate the structure and function of the barley seed Trx system at the molecular level combined with proteomic approaches to identify target proteins.

16.
Front Plant Sci ; 4: 37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23450732

RESUMO

The ascomycete fungal pathogen Fusarium graminearum (teleomorph stage: Gibberella zeae) is the causal agent of Fusarium head blight in wheat and barley. This disease leads to significant losses of crop yield, and especially quality through the contamination by diverse fungal mycotoxins, which constitute a significant threat to the health of humans and animals. In recent years, high-throughput proteomics, aiming at identifying a broad spectrum of proteins with a potential role in the pathogenicity and host resistance, has become a very useful tool in plant-fungus interaction research. In this review, we describe the progress in proteomics applications toward a better understanding of F. graminearum pathogenesis, virulence, and host defense mechanisms. The contribution of proteomics to the development of crop protection strategies against this pathogen is also discussed briefly.

17.
PLoS One ; 8(1): e53563, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349718

RESUMO

BACKGROUND: Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. CONCLUSIONS/SIGNIFICANCE: This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Olea/crescimento & desenvolvimento , Olea/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Frutas/genética , Olea/genética , Azeite de Oliva , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Análise de Componente Principal , Proteoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
18.
Mol Plant Pathol ; 13(5): 445-53, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22044785

RESUMO

Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley or wheat flour as the sole nutrient source to mimic the host-pathogen interaction. A gel-based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty-nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation of cell walls, starch and proteins. Of these proteins, 35% had not been identified in previous in planta or in vitro studies, 70% were predicted to contain signal peptides and a further 16% may be secreted in a nonclassical manner. Proteins identified in the 72 spots showing differential appearance between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase-polymerase chain reaction in barley and wheat spikelets harvested at 2-6 days after inoculation. In addition, a clear difference in the accumulation of fungal biomass and the extent of fungal-induced proteolysis of plant ß-amylase was observed in barley and wheat. The present study considerably expands the current database of F. graminearum secreted proteins which may be involved in Fusarium head blight.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Hordeum/microbiologia , Triticum/microbiologia , Proteínas Fúngicas/genética , Fusarium/genética , Interações Hospedeiro-Patógeno
19.
Plant Cell Environ ; 34(12): 2024-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21736591

RESUMO

Cereals are major crops worldwide, and improvement of their nitrogen use efficiency is a crucial challenge. In this study proteins responding to N supply in barley roots and shoots were analysed using a proteomics approach, to provide insight into mechanisms of N uptake and assimilation. Control plants grown hydroponically for 33 d with 5 mm nitrate, plants grown under N deficiency (0.5 mm nitrate, 33 d) or short-term N starvation (28 d with 5 mm nitrate followed by 5 d with no N source) were compared. N deficiency caused changes in C and N metabolism and ascorbate-glutathione cycle enzymes in shoots and roots. N starvation altered proteins of amino acid metabolism in roots. Both treatments caused proteome changes in roots that could affect growth. Shoots of plants grown with ammonium as N source (28 d with 5 mm nitrate followed by 5 d with 5 mm ammonium) showed responses similar to N deficient shoots, characterized by turnover of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and increases in proteins of the chloroplastic transcription and translation machinery. Identified proteins in 67 and 49 varying spots in roots and shoots respectively, corresponded to 62 functions and over 80 gene products, considerably advancing knowledge of N responses in barley.


Assuntos
Hordeum/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Proteoma/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteômica , Estresse Fisiológico
20.
Plant Physiol Biochem ; 49(11): 1362-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21798752

RESUMO

Fusarium seedling blight in cereals can result in significant reductions in plant establishment but has not received much attention. The disease often starts during seed germination due to sowing of the seeds infected by Fusarium spp. including Fusarium graminearum. In order to gain the first molecular insights into the response of the germinating barley seeds to F. graminearum for controlling the disease, germinating seeds were treated with water as control or inoculated with F. graminearum conidia and samples were harvested at 1, 2 and 3 days after inoculation (dai). Although germination rates were not significantly different between F. graminearum-inoculated and control samples, albumins and hydrogen peroxide were accumulated in the inoculated samples at 1-3 dai, indicating that there was an interaction between the germinating seeds and F. graminearum. Subsequently, a gel-based proteomic approach was employed to identify differentially expressed proteins in the seeds responding to fungal infection at 3 dai, which revealed 42 protein spots, 41 of which were identified by mass spectrometry. The up-regulated proteins mainly included heat shock proteins, antioxidant enzymes and the proteins involved in primary metabolism and detoxification whereas the majority of down-regulated proteins were plant protease inhibitors. The results suggest that there is a link between increased energy metabolism and oxidative stress in the germinating barley seeds in response to F. graminearum infection, which provides the first molecular insight into Fusarium seedling blight.


Assuntos
Fusarium/fisiologia , Hordeum/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Regulação para Baixo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Proteínas de Plantas/análise , Proteoma , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Sementes/fisiologia , Esporos Fúngicos , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...