Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Platelets ; 29(4): 357-364, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29461915

RESUMO

Transfusion of platelet concentrates represents an important treatment for various bleeding complications. However, the short half-life and frequent contaminations with bacteria restrict the availability of platelet concentrates and raise a clear demand for platelets generated ex vivo. Therefore, in vitro platelet generation from megakaryocytes represents an important research topic. A vital step for this process represents accurate analysis of thrombopoiesis and proplatelet formation, which is usually conducted manually. We aimed to develop a novel method for automated classification and analysis of proplatelet-forming megakaryocytes in vitro. After fluorescent labelling of surface and nucleus, MKs were automatically categorized and analysed with a novel pipeline of the open source software CellProfiler. Our new workflow is able to detect and quantify four subtypes of megakaryocytes undergoing thrombopoiesis: proplatelet-forming, spreading, pseudopodia-forming and terminally differentiated, anucleated megakaryocytes. Furthermore, we were able to characterize the inhibitory effect of dasatinib on thrombopoiesis in more detail. Our new workflow enabled rapid, unbiased, quantitative and qualitative in-depth analysis of proplatelet formation based on morphological characteristics. Clinicians and basic researchers alike will benefit from this novel technique that allows reliable and unbiased quantification of proplatelet formation. It thereby provides a valuable tool for the development of methods to generate platelets ex vivo and to detect effects of drugs on megakaryocyte differentiation.


Assuntos
Plaquetas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Animais , Humanos , Camundongos
2.
Genes Immun ; 12(7): 575-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21654841

RESUMO

Within the interleukin-10 receptor 1 (IL10R1) gene, two common variants are associated with certain diseases: single-nucleotide polymorphism 3 (SNP3), a serine-138 to glycine mutation is in linkage disequilibrium with SNP4, a glycine-330 to arginine mutation, both of which are considered loss-of-function alleles. However, the molecular consequence of G330R is unknown. We investigated possible roles of G330R on the dynamics of IL10R1 surface expression and signal transducer and activator of transduction (STAT) phosphorylation. HeLa cells expressing the respective IL10R1 haplotype were stimulated with IL-10. Significant reduction of IL10R1 surface expression was observed after ligand binding. Receptor expression remained low on continuous incubation with IL-10. In contrast, when treated with an IL-10 pulse, IL10R1 surface expression returned to its resting state within 3-9 h irrespective of the haplotype. STAT3 was rapidly phosphorylated both in cells with wild-type (WT) or variant IL10R1, and maintained phosphorylated when cells were cultured with IL-10. On IL-10 pulse, however, STAT3 phosphorylation declined rapidly in cells expressing IL10R1-G330R but not IL10R1-WT or S138G. Similar dynamics were observed with STAT1 phosphorylation at Tyr701. No differences in janus kinase 1 (JAK1) activation were observed in cells with WT or variant IL10R1. Our results indicate that IL10R1-G330R does not alter surface expression but duration of STAT phosphorylation, indicating that the position of G330 is important in stabilizing the STAT signal.


Assuntos
Subunidade alfa de Receptor de Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT3/metabolismo , Pontos de Checagem do Ciclo Celular , Ativação Enzimática/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Interleucina-10/metabolismo , Janus Quinase 1/metabolismo , Ligantes , Fosforilação , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...