Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362168

RESUMO

Several Triticum species spread in cultivation in Sicily and neighboring regions over the centuries, which led to the establishment of a large genetic diversity. Many ancient varieties were widely cultivated until the beginning of the last century before being replaced by modern varieties. Recently, they have been reintroduced in cultivation in Sicily. Here, the genetic diversity of 115 and 11 accessions from Sicily and Calabria, respectively, belonging to Triticum species was evaluated using a high-density SNP array. Einkorn, emmer, and spelta wheat genotypes were used as outgroups for species and subspecies; five modern varieties of durum and bread wheat were used as references. A principal coordinates analysis (PCoA) and an unweighted pair group method with arithmetic mean (UPGMA) showed four distinct groups among Triticum species and T. turgidum subspecies. The population structure analysis distinguished five gene pools, among which three appeared private to the T. aestivum, T. turgidum subsp. Turgidum, and 'Timilia' group. The principal component analysis (PCA) displayed a bio-morphological trait relationship of a subset (110) of ancient wheat varieties and their wide variability within the T. turgidum subsp. durum subgroups. A discriminant analysis of principal components (DAPC) and phylogenetic analyses applied to the four durum wheat subgroups revealed that the improved varieties harbored a different gene pool compared to the most ancient varieties. The 'Russello' and 'Russello Ibleo' groups were distinguished; both displayed higher genetic variability compared to the 'Timilia' group accessions. This research represents a comprehensive approach to fingerprinting the old wheat Sicilian germplasm, which is useful in avoiding commercial fraud and sustaining the cultivation of landraces and ancient varieties.


Assuntos
Variação Genética , Triticum , Triticum/genética , Genótipo , Filogenia , Fenótipo , Sicília
2.
Plants (Basel) ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270101

RESUMO

The characterization of plant genetic resources is a precondition for genetic improvement and germplasm management. The increasing use of molecular markers for DNA-based genotype signature is crucial for variety identification and traceability in the food supply chain. We collected 75 Sicilian hazelnut accessions from private and public field collections, including widely grown varieties from the Nebrodi Mountains in north east Sicily (Italy). The germplasm was fingerprinted through nine standardized microsatellites (SSR) for hazelnut identification to evaluate the genetic diversity of the collected accessions, validating SSR discrimination power. We identified cases of homonymy and synonymy among acquisitions and the unique profiles. The genetic relationships illustrated by hierarchical clustering, structure, and discriminant analyses revealed a clear distinction between local and commercial varieties. The comparative genetic analysis also showed that the Nebrodi genotypes are significantly different from the Northern Italian, Iberian, and Turkish genotypes. These results highlight the need and urgency to preserve Nebrodi germplasm as a useful and valuable source for traits of interest employable for breeding. Our study demonstrates the usefulness of molecular marker analysis to select a reference germplasm collection of Sicilian hazelnut varieties and to implement certified plants' production in the supply chain.

3.
Plants (Basel) ; 9(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759817

RESUMO

The historical cultivation of common bean (Phaseolus vulgaris L.) has resulted in the development of local populations/cultivars in restricted Italian rural areas. Many common bean landraces, still cultivated in small mountain areas from Sicily, have become outdated and endangered due to the commercial varieties spreading. These accessions are poorly known but often represent a genetic heritage to be preserved and enhanced. The ex situ conservation of fifty-seven Sicilian common bean landraces was carried out at the "Living Plants Germplasm Bank" at Ucria (Messina, Italy), founded by the Nebrodi Regional Park, together with the "Sicilian Plant Germplasm Repository" of University of Palermo (SPGR/PA). To assess the germplasm genetic diversity, nineteen morphological traits and eight Simple Sequence Repeats (SSRs) were used. Genetic distances among landraces were calculated to construct a clustering tree by using unweighted pair group method arithmetic (UPGMA). Seed germplasm diversity of Sicilian common bean varied from 80.7% to 93.3%, based on six seed descriptors and six leaf, flower, and pod descriptors, respectively, while cluster genetic analysis depicted a clear separation among all the 57 landraces. Principal coordinates (PCoA) and STRUCTURE analyses showed a prevalent rate of admixture between Mesoamerican and Andean gene pools in Sicilian common bean collection, confirming its heterogeneity. The observed high level of diversity evidenced the needs to adopt accurate criterion to plan a definitive ex situ germplasm collection to share agrobiodiversity with local farmers and to avoid any further loss of genetic resources in rural and protected areas.

4.
Plants (Basel) ; 8(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052327

RESUMO

During the XX Century, the widespread use of modern wheat cultivars drastically reduced the cultivation of ancient landraces, which nowadays are confined to niche cultivation areas. Several durum wheat landraces adapted to the extreme environments of the Mediterranean region, are still being cultivated in Sicily, Italy. Detailed knowledge of the genetic diversity of this germplasm could lay the basis for their efficient management in breeding programs, for a wide-range range of traits. The aim of the present study was to characterize a collection of durum wheat landraces from Sicily, using single nucleotide polymorphisms (SNP) markers, together with agro-morphological, phenological and quality-related traits. Two modern cv. Simeto, Claudio, and the hexaploid landrace, Cuccitta, were used as outgroups. Cluster analysis and Principal Coordinates Analysis (PCoA) allowed us to identify four main clusters across the analyzed germplasm, among which a cluster included only historical and modern varieties. Likewise, structure analysis was able to distinguish the ancient varieties from the others, grouping the entries in seven cryptic genetic clusters. Furthermore, a Principal Component Analysis (PCA) was able to separate the modern testers from the ancient germplasm. This approach was useful to classify and evaluate Sicilian ancient wheat germplasm, supporting their safeguard and providing a genetic fingerprint that is necessary for avoiding commercial frauds to sustaining the economic profits of farmers resorting to landraces cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...