Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 598, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238312

RESUMO

In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes implementing conditional operations on incoming photons, using a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependent photon state, in a deterministic way. Here we use an electrically-contacted pillar-based cavity, embedding a single InGaAs quantum dot, to demonstrate giant polarisation rotations induced on reflected photons by a single electron spin. A complete tomography approach is introduced to extrapolate the output polarisation Stokes vector, conditioned by a specific spin state, in presence of spin and charge fluctuations. We experimentally approach polarisation states conditionally rotated by [Formula: see text], π, and [Formula: see text] in the Poincaré sphere with extrapolated fidelities of (97 ± 1) %, (84 ± 7) %, and (90 ± 8) %, respectively. We find that an enhanced light-matter coupling, together with limited cavity birefringence and reduced spectral fluctuations, allow targeting most conditional rotations in the Poincaré sphere, with a control both in longitude and latitude. Such polarisation control may prove crucial to adapt spin-photon interfaces to various configurations and protocols for quantum information.

2.
Biomater Adv ; 147: 213341, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827851

RESUMO

Specifically designed samples have been analyzed to test the ability of Brillouin spectroscopy to provide reliable mechanical characterization of micro and nano-objects. The selected samples are polymeric films, whose transversal sizes from hundreds of nano- to some micro-meters cover the entire range of length-scales relevant in Brillouin scattering process. The experimental data highlight how, the size of the extended collective oscillation (acoustic phonons, in brief) is the lowest spatial resolution reachable in Brillouin mechanical characterization. Conversely, in the limit condition of phonon confinement, the technique provides the mechanical properties of nano-objects whose characteristic size is comparable with the phonon wavelength (⁓300 nm). Investigating acoustically heterogeneous materials, both size of heterogeneity and acoustic mismatch between adjacent regions are shown to be relevant in shaping the Brillouin response. In particular, a transition from a confined to a non-confined condition is obtained modulating the acoustic mismatch between the micro-objects and their local environment. The provided results and the derived analytic models for the data analysis will guide the interpretation of Brillouin spectra acquired in complex nano-structured samples such as cells, tissues or biomimetic materials. Our analysis can therefore generate new insights to tackle fundamental problems in mechanobiology or to characterize new bioengineered materials.


Assuntos
Diagnóstico por Imagem , Fônons , Análise Espectral , Polímeros
3.
Phys Rev Lett ; 130(5): 050803, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800448

RESUMO

We report on an elementary quantum network of two atomic ions separated by 230 m. The ions are trapped in different buildings and connected with 520(2) m of optical fiber. At each network node, the electronic state of an ion is entangled with the polarization state of a single cavity photon; subsequent to interference of the photons at a beam splitter, photon detection heralds entanglement between the two ions. Fidelities of up to (88.0+2.2-4.7)% are achieved with respect to a maximally entangled Bell state, with a success probability of 4×10^{-5}. We analyze the routes to improve these metrics, paving the way for long-distance networks of entangled quantum processors.

4.
J R Soc Interface ; 19(187): 20210642, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104431

RESUMO

Bone has a sophisticated architecture characterized by a hierarchical organization, starting at the sub-micrometre level. Thus, the analysis of the mechanical and structural properties of bone at this scale is essential to understand the relationship between its physiology, physical properties and chemical composition. Here, we unveil the potential of Brillouin-Raman microspectroscopy (BRaMS), an emerging correlative optical approach that can simultaneously assess bone mechanics and chemistry with micrometric resolution. Correlative hyperspectral imaging, performed on a human diaphyseal ring, reveals a complex microarchitecture that is reflected in extremely rich and informative spectra. An innovative method for mechanical properties analysis is proposed, mapping the intermixing of soft and hard tissue areas and revealing the coexistence of regions involved in remodelling processes, nutrient transportation and structural support. The mineralized regions appear elastically inhomogeneous, resembling the pattern of the osteons' lamellae, while Raman and energy-dispersive X-ray images through scanning electron microscopy show an overall uniform distribution of the mineral content, suggesting that other structural factors are responsible for lamellar micromechanical heterogeneity. These results, besides giving an important insight into cortical bone tissue properties, highlight the potential of BRaMS to access the origin of anisotropic mechanical properties, which are almost ubiquitous in other biological tissues.


Assuntos
Osso e Ossos , Ósteon , Anisotropia , Osso e Ossos/diagnóstico por imagem , Osso Cortical , Ósteon/fisiologia , Humanos , Microscopia Eletrônica de Varredura , Análise Espectral Raman/métodos
5.
Sci Rep ; 10(1): 17341, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060731

RESUMO

Brillouin-Raman microspectroscopy is presented as an innovative label-free all-optical investigation approachable to characterize the chemical composition and the mechanical properties of human tissues at micrometric resolution. Brillouin maps unveil mechanical heterogeneities in a human femoral diaphysis, showing a ubiquitous co-existence of hard and soft components, even in the most compact sections. The novel correlative analysis of Brillouin and Raman maps shows that the relative intensity of Brillouin peaks is a good proxy for the fraction of mineralized fibers and that the stiffness (longitudinal elastic modulus) of the hard component is linearly dependent on the hydroxyapatite concentration. For the soft component, a gradient of composition is found, ranging from an abundance of proteins in the more compact, external, bone to abundance of lipids, carotenoids, and heme groups approaching the trabecular, inner, part of the diaphysis. This work unveils the strong potential of correlative mechano-chemical characterization of human tissues at a micrometric resolution for both fundamental and translational research.


Assuntos
Diáfises/química , Fêmur/química , Análise Espectral Raman/métodos , Fenômenos Biomecânicos , Módulo de Elasticidade , Humanos , Pesquisa Translacional Biomédica
6.
Opt Lett ; 45(5): 1063-1066, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108770

RESUMO

Brillouin imaging is an emerging optical elastography technique that is able to generate maps of the mechanical properties at microscale with great potential in biophysical and biomedical fields. A key parameter is its spatial resolution, which is usually identified with that of the confocal microscope coupled to the Brillouin interferometer. Conversely, here we demonstrate that the mean free path of acoustic phonons plays a major role in defining the resolution, especially for high numerical aperture confocal setups. Surprisingly, the resolution of elastography maps may even deteriorate when decreasing the scattering volume.

7.
Biomed Opt Express ; 10(5): 2606-2611, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31143505

RESUMO

Brillouin micro-spectroscopy is applied for investigating the mechanical properties of bone and cartilage tissues of a human femoral head. Distinctive mechanical properties of the cartilage surface, subchondral and trabecular bone are reported, with marked heterogeneities at both micrometric and millimetric length scales. A ubiquitous soft component is reported for the first time, characterized by a longitudinal modulus of about 4.3 GPa, possibly related to the amorphous phase of the bone. This phase is mixed, at micrometric scales, with a harder component, ascribed to mineralized collagen fibrils, characterized by a longitudinal modulus ranging between 16 and 25 GPa.

8.
J Phys Chem Lett ; 9(1): 120-125, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29243934

RESUMO

Water is a strong self-associated liquid with peculiar properties that crucially depend on H-bonding. As regards its molecular dynamics, only recently has water reorientation been successfully described based on a jump mechanism, which is responsible for the overall H-bonding exchange. Here, using high-resolution broad-band depolarized light scattering, we have investigated the reorientational dynamics of formamide (FA) as a function of concentration from the neat liquid to diluted aqueous solutions. Our main findings indicate that in the diluted regime the water rearrangement can trigger the motion of FA solute molecules, which are forced to reorient at the same rate as water. This highlights an exceptional behavior of FA, which perfectly substitutes water within its network. Besides other fundamental implications connected with the relevance of FA, its water-like behavior provides rare experimental evidence of a solute whose dynamics is completely slaved to the solvent.

9.
Biophys Chem ; 229: 123-129, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28684254

RESUMO

Mechanical mapping with chemical specificity of biological samples is now made possible by joint micro-Brillouin and micro-Raman measurements. In this work, thanks to the unprecedented contrast of a new tandem Fabry-Perot interferometer, we demonstrate simultaneous detection of Brillouin and Raman spectra from different Candida biofilms. Our proof-of-concept study reveals the potential of this label-free joint micro-spectroscopy technique in challenging microbiological issues. In particular, heterogeneous chemo-mechanical maps of Candida biofilms are obtained, without the need for staining or touching the sample. The correlative Raman and Brillouin investigation evidences the role of both extracellular polymeric substances and of hydration water in inducing a marked local softening of the biofilm.


Assuntos
Biofilmes , Candida/química , Técnicas Microbiológicas/métodos , Microespectrofotometria , Análise Espectral Raman , Candida/fisiologia , Módulo de Elasticidade , Técnicas Microbiológicas/instrumentação , Viscosidade
10.
Soft Matter ; 12(25): 5501-14, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27280176

RESUMO

When a solute is dissolved in water, their mutual interactions determine the molecular properties of the solute on one hand, and the structure and dynamics of the surrounding water particles (the so-called hydration water) on the other. The very existence of soft matter and its peculiar properties are largely due to the wide variety of possible water-solute interactions. In this context, water is not an inert medium but rather an active component, and hydration water plays a crucial role in determining the structure, stability, dynamics, and function of matter. This review focuses on the collective dynamics of hydration water in terms of retardation with respect to the bulk, and of the number of molecules whose dynamics is perturbed. Since water environments are in a dynamic equilibrium, with molecules continuously exchanging from around the solute towards the bulk and vice versa, we examine the ability of different techniques to measure the water dynamics on the basis of the explored time scales and exchange rates. Special emphasis is given to the collective dynamics probed by extended depolarized light scattering and we discuss whether and to what extent the results obtained in aqueous solutions of small molecules can be extrapolated to the case of large biomacromolecules. In fact, recent experiments performed on solutions of increasing complexity clearly indicate that a reductionist approach is not adequate to describe their collective dynamics. We conclude this review by presenting current ideas that are being developed to describe the dynamics of water interacting with macromolecules.

11.
Phys Chem Chem Phys ; 18(13): 8881-9, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26958663

RESUMO

Hydrophilic and hydrophobic interactions strongly affect the solvation dynamics of biomolecules. To understand their role, small model systems are generally employed to simplify the investigations. In this study the amphiphile trimethylamine N-oxide (TMAO) is chosen as an exemplar, and studied by means of extended frequency range depolarized light scattering (EDLS) experiments as a function of solute concentration. This technique proves to be a suitable tool for investigating different aspects of aqueous solvation, being able at the same time to provide information about relaxation processes and vibrational modes of solvent and solute. In the case study of TMAO, we find that the relaxation dynamics of hydration water is moderately retarded compared to the bulk, and the perturbation induced by the solute on surrounding water is confined to the first hydration shell. The results highlight the hydrophobic character of TMAO in its interaction with water. The number of molecules taking part in the solvation process decreases as the solute concentration increases, following a trend consistent with the hydration water-sharing model, and suggesting that aggregation between solute molecules is negligible. Finally, the analysis of the resonant modes in the THz region and the comparison with the corresponding results obtained for the isosteric molecule tert-butyl alcohol (TBA) allow us to provide new insights into the different solvating properties of these two biologically relevant molecules.


Assuntos
Metilaminas/química , Água/química , Luz , Espalhamento de Radiação , Solubilidade
12.
Biophys Chem ; 208: 34-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26282883

RESUMO

In the present study, FTIR spectroscopy was used to monitor the freeze-thaw cycle of two cellular lines (HuDe and Jurkat) suspended in three different media: phosphate buffer solution (PBS); dimethylsulfoxide (DMSO)/PBS solution at 0.1 DMSO molar fraction; and CryoSure (0.1 DMSO molar fraction PBS solution+dextran 5% w/v) solution. The Trypan Blue test was also applied before freezing and after thawing each cell sample to estimate the recovery of membrane integrity after thermal treatment, and correlate this datum with spectroscopic results. By following the temperature evolution of two different spectral components (the libration and bending combination mode νc(H2O) at 2000-2500 cm(-1), and the methylene symmetric stretching vibration νsym(CH2) at about 2850 cm(-1)) in the -120÷28°C range, we evidenced the main transition of lipid membrane in connection with cell dehydration, as induced by ice formation in the extracellular medium. In particular, in DMSO/PBS and CryoSure samples we observed a transition to a more rigid state of the lipid membrane together with an increased amount of non-freezable water in the extracellular medium; these results are connected to the role of DMSO as a cryoprotective agent irrespective of the nature of cell type.


Assuntos
Membrana Celular/química , Criopreservação , Crioprotetores/química , Fibroblastos/citologia , Congelamento , Lipídeos de Membrana/química , Soluções Tampão , Linhagem Celular , Dextranos/química , Dimetil Sulfóxido/química , Humanos , Células Jurkat , Fosfatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
Biophys Chem ; 208: 48-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26256426

RESUMO

In this paper we test the ability of Raman micro-spectroscopy and Raman mapping to investigate the status of cells grown in adhesion on different substrates. The spectra of immortalized SH-SY5Y cells, grown on silicon and on metallic substrates are compared with those obtained for the same type of cells adhering on organic polyaniline (PANI), a memristive substrate chosen to achieve a living bio-hybrid system. Raman spectra give information on the status of the single cell, its local biochemical composition, and on the modifications induced by the substrate interaction. The good agreement between Raman spectra collected from cells adhering on different substrates confirms that the PANI, besides allowing the cell growth, doesn't strongly affect the general biochemical properties of the cell. The investigation of the cellular state in a label free condition is challenging and the obtained results confirm the Raman ability to achieve this information.


Assuntos
Compostos de Anilina/química , Silício/química , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Análise Espectral Raman , Células Tumorais Cultivadas
14.
Phys Chem Chem Phys ; 17(17): 11423-31, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25853990

RESUMO

Protein low-frequency vibrational modes are an important portion of a proteins' dynamical repertoire. Yet, it is notoriously difficult to isolate specific vibrational features in the spectra of proteins. Given an appropriately chosen model peptide, and using different experimental conditions, we can simplify the system and gain useful insights into the protein vibrational properties. Combining neutron scattering, depolarized light scattering, and molecular dynamics simulations, we analyse the low frequency vibrations of biological molecules, comparing the results from a small globular protein, lysozyme, and an amphiphilic peptide, NALMA, both in solution and in powder states. Lysozyme and NALMA present similar spectral features in the frequency range between 1 and 10 THz. With the aid of MD simulations, we assign the spectral features to methyl groups' librations (1-5 THz) and hindered torsions (5-10 THz) in NALMA. Our data also show that, while proteins display boson peak vibrations in both powder and solution forms, NALMA exhibits boson peak vibrations in powder form only. This provides insight into the nature of this feature, suggesting a connection of BP collective motions to a characteristic length scale of heterogeneities present in the system. These results provide context for the use of model peptide systems to study protein dynamics; demonstrating both their utility, and the great care that has to be used in extrapolating results observed in powder to solutions.


Assuntos
Leucina/análogos & derivados , Muramidase/química , Vibração , Leucina/química , Simulação de Dinâmica Molecular , Muramidase/metabolismo
15.
J Phys Chem B ; 119(29): 9236-43, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25436859

RESUMO

Molecular dynamics and structural properties of water-tert-butyl alcohol (TBA) mixtures are studied as a function of concentration by extended depolarized light scattering (EDLS) experiments. The wide frequency range, going from fraction to several thousand GHz, explored by EDLS allows distinguishing TBA rotational dynamics from structural relaxation of water and intermolecular vibrational and librational modes of the solution. Contributions to the water relaxation originating from two distinct populations, i.e. hydration and bulk water, are clearly identified. The dynamic retardation factor of hydration water with respect to the bulk, ξ ≈ 4, almost concentration independent, is one of the smallest found by EDLS among a variety of systems of different nature and complexity. This result, together with the small number of water molecules perturbed by the presence of TBA, supports the idea that hydrophobic simple molecules are less effective than hydrophilic and more complex molecules in perturbing the H-bond network of liquid water. At increasing TBA concentrations the average number of perturbed water molecules shows a pronounced decrease and the characteristic frequency of librational motions reduces significantly, both of which are results consistent with the occurrence of self-aggregation of TBA molecules.


Assuntos
Luz , Simulação de Dinâmica Molecular , Espalhamento de Radiação , Água/química , terc-Butil Álcool/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Rotação , Soluções/química , Solventes/química , Análise Espectral Raman , Vibração
16.
J Chem Phys ; 141(21): 214901, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481163

RESUMO

Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.

17.
Phys Rev Lett ; 113(11): 117202, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25260002

RESUMO

We study quenches in integrable spin-1/2 chains in which we evolve the ground state of the antiferromagnetic Ising model with the anisotropic Heisenberg Hamiltonian. For this nontrivially interacting situation, an application of the first-principles-based quench-action method allows us to give an exact description of the postquench steady state in the thermodynamic limit. We show that a generalized Gibbs ensemble, implemented using all known local conserved charges, fails to reproduce the exact quench-action steady state and to correctly predict postquench equilibrium expectation values of physical observables. This is supported by numerical linked-cluster calculations within the diagonal ensemble in the thermodynamic limit.

18.
J Chem Phys ; 140(18): 184505, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832286

RESUMO

Extended frequency range depolarized light scattering measurements of water-levoglucosan solutions are reported at different concentrations and temperatures to assess the effect of the presence and distribution of hydroxyl groups on the dynamics of hydration water. The anhydro bridge, reducing from five to three the number of hydroxyl groups with respect to glucose, considerably affects the hydration properties of levoglucosan with respect to those of mono and disaccharides. In particular, we find that the average retardation of water dynamics is ≈3-4, that is lower than ≈5-6 previously found in glucose, fructose, trehalose, and sucrose. Conversely, the average number of retarded water molecules around levoglucosan is 24, almost double that found in water-glucose mixtures. These results suggest that the ability of sugar molecules to form H-bonds through hydroxyl groups with surrounding water, while producing a more effective retardation, it drastically reduces the spatial extent of the perturbation on the H-bond network. In addition, the analysis of the concentration dependence of the hydration number reveals the aptitude of levoglucosan to produce large aggregates in solution. The analysis of shear viscosity and rotational diffusion time suggests a very short lifetime for these aggregates, typically faster than ≈20 ps.


Assuntos
Glucose/análogos & derivados , Modelos Químicos , Modelos Moleculares , Água/química , Simulação por Computador , Difusão , Glucose/química , Ligação de Hidrogênio , Rotação , Resistência ao Cisalhamento , Soluções
19.
Analyst ; 139(4): 729-33, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24396853

RESUMO

We describe the first application of confocal Brillouin and Raman microscopy to ex vivo human epithelial tissue - Barrett's oesophagus. This non-invasive label-free approach provides high-resolution mechanical mapping with chemical specificity, opening the route to a new integrated method for multiple biomedical and bioengineering applications, and potentially in vivo real-time diagnostics.

20.
J Phys Chem B ; 116(51): 14760-7, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23205713

RESUMO

The relaxation properties of hydration water around fructose, glucose, sucrose, and trehalose molecules have been studied by means of extended frequency range depolarized light scattering and molecular dynamics simulations. Evidence is given of hydration dynamics retarded by a factor ξ = 5-6 for all the analyzed solutes. A dynamical hydration shell is defined based on the solute-induced slowing down of water mobility at picosecond time scales. The number of dynamically perturbed water molecules N(h) and its concentration dependence have been determined in glucose and trehalose aqueous solutions up to high solute weight fractions (ca. 45%). For highly dilute solutions, about 3.3 water molecules per sugar hydroxyl group are found to be part of the hydration shell of mono- and disaccharide. For increasing concentrations, a noticeable solute-dependent reduction of hydration number occurs, which has been attributed, in addition to simple statistical shells overlapping, to aggregation of solute molecules. A scaling law based on the number of hydroxyl groups collapses the N(h) concentration dependence of glucose and trehalose into a single master plot, suggesting hydration and aggregation properties independent of the size of the sugar. As a whole, the present results point to the concentration of hydroxyl groups as the parameter guiding both sugar-water and sugar-sugar interactions, without appreciable difference between mono- and disaccharides.


Assuntos
Dissacarídeos/química , Glucose/química , Simulação de Dinâmica Molecular , Sacarose/química , Trealose/química , Água/química , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...