Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 166, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581583

RESUMO

The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.


Assuntos
Proteínas de Membrana Transportadoras , Receptores Virais , Gatos , Animais , Proteínas de Membrana Transportadoras/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
2.
Cell Rep ; 43(3): 113854, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412099

RESUMO

The definition of cell metabolic profile is essential to ensure skeletal muscle fiber heterogeneity and to achieve a proper equilibrium between the self-renewal and commitment of satellite stem cells. Heme sustains several biological functions, including processes profoundly implicated with cell metabolism. The skeletal muscle is a significant heme-producing body compartment, but the consequences of impaired heme homeostasis on this tissue have been poorly investigated. Here, we generate a skeletal-muscle-specific feline leukemia virus subgroup C receptor 1a (FLVCR1a) knockout mouse model and show that, by sustaining heme synthesis, FLVCR1a contributes to determine the energy phenotype in skeletal muscle cells and to modulate satellite cell differentiation and muscle regeneration.


Assuntos
Proteínas de Membrana Transportadoras , Células Satélites de Músculo Esquelético , Camundongos , Animais , Proteínas de Membrana Transportadoras/metabolismo , Heme/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Metabolismo Energético , Células Satélites de Músculo Esquelético/metabolismo , Diferenciação Celular/fisiologia
3.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267538

RESUMO

Cancer is one of the leading causes of mortality worldwide. Beyond standard therapeutic options, whose effectiveness is often reduced by drug resistance, repurposing of the antidiabetic drug metformin appears promising. Heme metabolism plays a pivotal role in the control of metabolic adaptations that sustain cancer cell proliferation. Recently, we demonstrated the existence of a functional axis between the heme synthetic enzyme ALAS1 and the heme exporter FLVCR1a exploited by cancer cells to down-modulate oxidative metabolism. In colorectal cancer cell lines, the inhibition of heme synthesis-export system was associated with reduced proliferation and survival. Here, we aim to assess whether the inhibition of the heme synthesis-export system affects the sensitivity of colorectal cancer cells to metformin. Our data demonstrate that the inhibition of this system, either by blocking heme efflux with a FLVCR1a specific shRNA or by inhibiting heme synthesis with 5-aminolevulinic acid, improves metformin anti-proliferative effect on colorectal cancer cell lines. In addition, we demonstrated that the same effect can be obtained in other kinds of cancer cell lines. Our study provides an in vitro proof of concept of the possibility to target heme metabolism in association with metformin to counteract cancer cell growth.

4.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055182

RESUMO

Hemopexin is the plasma protein with the highest affinity for heme. Seminal studies have highlighted its role in different kinds of heme-associated disorders, but its implication in cancer has been neglected for a long time. Considering the emerging importance of heme in tumors, the present review proposes an update of the works investigating hemopexin involvement in cancer, with the attempt to stimulate further future studies on this topic.


Assuntos
Hemopexina/metabolismo , Neoplasias/metabolismo , Progressão da Doença , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Receptores Virais/metabolismo
5.
Biomedicines ; 9(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34829786

RESUMO

The crosstalk among cancer cells (CCs) and stromal cells within the tumor microenvironment (TME) has a prominent role in cancer progression. The significance of endothelial cells (ECs) in this scenario relies on multiple vascular functions. By forming new blood vessels, ECs support tumor growth. In addition to their angiogenic properties, tumor-associated ECs (TECs) establish a unique vascular niche that actively modulates cancer development by shuttling a selected pattern of factors and metabolites to the CC. The profile of secreted metabolites is strictly dependent on the metabolic status of the cell, which is markedly perturbed in TECs. Recent evidence highlights the involvement of heme metabolism in the regulation of energy metabolism in TECs. The present study shows that interfering with endothelial heme metabolism by targeting the cell membrane heme exporter Feline Leukemia Virus subgroup C Receptor 1a (FLVCR1a) in TECs, resulted in enhanced fatty acid oxidation (FAO). Moreover, FAO-derived acetyl-CoA was partly consumed through ketogenesis, resulting in ketone bodies (KBs) accumulation in FLVCR1a-deficient TECs. Finally, the results from this study also demonstrate that TECs-derived KBs can be secreted in the extracellular environment, inducing a metabolic rewiring in the CC. Taken together, these data may contribute to finding new metabolic vulnerabilities for cancer therapy.

6.
Cell Rep ; 35(11): 109252, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133926

RESUMO

Heme is an iron-containing porphyrin of vital importance for cell energetic metabolism. High rates of heme synthesis are commonly observed in proliferating cells. Moreover, the cell-surface heme exporter feline leukemia virus subgroup C receptor 1a (FLVCR1a) is overexpressed in several tumor types. However, the reasons why heme synthesis and export are enhanced in highly proliferating cells remain unknown. Here, we illustrate a functional axis between heme synthesis and heme export: heme efflux through the plasma membrane sustains heme synthesis, and implementation of the two processes down-modulates the tricarboxylic acid (TCA) cycle flux and oxidative phosphorylation. Conversely, inhibition of heme export reduces heme synthesis and promotes the TCA cycle fueling and flux as well as oxidative phosphorylation. These data indicate that the heme synthesis-export system modulates the TCA cycle and oxidative metabolism and provide a mechanistic basis for the observation that both processes are enhanced in cells with high-energy demand.


Assuntos
Ciclo do Ácido Cítrico , Heme/biossíntese , Fosforilação Oxidativa , Animais , Transporte Biológico , Células CACO-2 , Heme/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos SCID , Receptores Virais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Neurosci Biobehav Rev ; 124: 124-136, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545213

RESUMO

Despite increasing progress in the understanding of the pathophysiology of pain, current management of pain syndromes is still unsatisfactory. The recent discovery of novel pathways associated with pain insensitivity in humans represents a unique opportunity to improve our knowledge on the pathophysiology of pain. Heme metabolism recently emerged as a crucial regulator of nociception. Of note, alteration of heme metabolism has been associated with pain insensitivity as well as with acute and chronic pain in porphyric neuropathy and hemolytic diseases. However, the molecular mechanisms linking heme to the pain pathways still remain unclear. The review focuses on the major heme-regulated processes relevant for sensory neurons' maintenance, peripheral and central sensitization as well as for pain comorbidities, like anxiety and depression. By discussing the body of knowledge on the topic, we provide a novel perspective on the molecular mechanisms linking heme to nociception.


Assuntos
Heme , Nociceptividade , Heme/metabolismo , Humanos , Proteínas de Membrana Transportadoras , Dor , Receptores Virais/metabolismo
8.
Pain ; 160(12): 2766-2775, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408049

RESUMO

Hereditary sensory and autonomic neuropathies (HSANs) are a group of clinically and genetically heterogeneous disorders of the peripheral nervous system mainly characterized by impaired nociception and autonomic dysfunction. We previously identified heme metabolism as a novel pathway contributing to sensory neurons maintenance and nociception. Indeed, we reported mutations in the feline leukemia virus subgroup C receptor 1 (FLVCR1) gene in individuals affected by HSAN. FLVCR1 gene encodes for 2 heme export proteins, FLVCR1a (plasma membrane) and FLVCR1b (mitochondria), crucially involved in the regulation of cellular heme homeostasis. Here, we report on 2 additional patients carrying novel biallelic mutations in FLVCR1 translation initiation codon (c.2T>C; p.(Met1Thr) and c.3G>T; p.(Met1Ile)). We overexpressed the c.2T>C; p.(Met1Thr) mutant in human cell lines and we describe its impact on protein structure and function in comparison with other HSAN-related mutations. We found that the mutation interferes with translation in 2 different ways: by lowering levels of translation of wild-type protein and by inducing translation initiation from a downstream in-frame ATG, leading to the production of an N-terminal truncated protein that is retained in the endoplasmic reticulum. The impact of different kinds of mutations on FLVCR1a localization and structure was also described. The identification of novel FLVCR1 mutations in HSAN reinforces the crucial role of heme in sensory neuron maintenance and pain perception. Moreover, our in vitro findings demonstrate that heme export is not completely lost in HSAN patients, thus suggesting the possibility to improve FLVCR1 expression/activity for therapeutic purposes.


Assuntos
Heme/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Proteínas de Membrana Transportadoras/genética , Receptores Virais/genética , Análise Mutacional de DNA , Feminino , Células HeLa , Humanos , Lactente , Recém-Nascido , Masculino , Mutação
9.
Front Oncol ; 9: 162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941311

RESUMO

Heme, an iron-containing porphyrin, is fundamental for a variety of functions in cell homeostasis. Nevertheless, recent data indicate that dysregulation of heme metabolism might promote tumorigenesis. The intracellular heme pool is finely regulated through the control of heme synthesis, degradation, incorporation into hemoproteins and trafficking across membranes. All these processes might be potentially targeted to alter endogenous heme content in order to counteract cancer growth. Nevertheless, these putative therapeutic interventions have to take into account the possibility of undesired side effects, such as the over-activation of heme-dependent enzymes involved in cancer. Among them, cyclooxygenase-2 is a prostaglandin-producing hemoprotein, induced during inflammation and in different types of tumor, particularly in colorectal cancer. The aim of this study was to evaluate whether modulation of endogenous heme may affect cyclooxygenase-2 expression and activity, taking advantage of two different approaches able to alter heme levels: the silencing of the heme exporter Feline Leukemia Virus subgroup C receptor 1 and the induction of heme synthesis by 5-aminolevulinic acid administration. Our data demonstrate that the down-regulation of the heme exporter in colorectal cancer cells does not affect cyclooxygenase-2 expression and activity. Conversely, 5-aminolevulinic acid administration results in decreased cyclooxygenase-2 expression. However, the overall cyclooxygenase-2 enzymatic activity is maintained. The present work sheds light on the complex modulation of cyclooxygenase-2 by endogenous heme and support the idea that targeting heme metabolism could be a valuable therapeutic option against cancer.

10.
Front Oncol ; 9: 1540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010627

RESUMO

Heme, an iron-containing porphyrin, is of vital importance for cells due to its involvement in several biological processes, including oxygen transport, energy production and drug metabolism. Besides these vital functions, heme also bears toxic properties and, therefore, the amount of heme inside the cells must be tightly regulated. Similarly, heme intake from dietary sources is strictly controlled to meet body requirements. The multifaceted nature of heme renders it a best candidate molecule exploited/controlled by tumor cells in order to modulate their energetic metabolism, to interact with the microenvironment and to sustain proliferation and survival. The present review summarizes the literature on heme and cancer, emphasizing the importance to consider heme as a prominent player in different aspects of tumor onset and progression.

11.
Front Neurosci ; 12: 712, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356807

RESUMO

Heme (iron-protoporphyrin IX) is an essential co-factor involved in several biological processes, including neuronal survival and differentiation. Nevertheless, an excess of free-heme promotes oxidative stress and lipid peroxidation, thus leading to cell death. The toxic properties of heme in the brain have been extensively studied during intracerebral or subarachnoid hemorrhages. Recently, a growing number of neurodegenerative disorders have been associated to alterations of heme metabolism. Hence, the etiology of such diseases remains undefined. The aim of this review is to highlight the neuropathological role of heme and to discuss the major heme-regulated pathways that might be crucial for the survival of neuronal cells. The understanding of the molecular mechanisms linking heme to neurodegeneration will be important for therapeutic purposes.

12.
Pharmaceuticals (Basel) ; 11(3)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231533

RESUMO

Mitochondrial dysfunction has achieved an increasing interest in the field of neurodegeneration as a pathological hallmark for different disorders. The impact of mitochondria is related to a variety of mechanisms and several of them can co-exist in the same disease. The central role of mitochondria in neurodegenerative disorders has stimulated studies intended to implement therapeutic protocols based on the targeting of the distinct mitochondrial processes. The review summarizes the most relevant mechanisms by which mitochondria contribute to neurodegeneration, encompassing therapeutic approaches. Moreover, a new perspective is proposed based on the heme impact on neurodegeneration. The heme metabolism plays a central role in mitochondrial functions, and several evidences indicate that alterations of the heme metabolism are associated with neurodegenerative disorders. By reporting the body of knowledge on this topic, the review intends to stimulate future studies on the role of heme metabolism in neurodegeneration, envisioning innovative strategies in the struggle against neurodegenerative diseases.

13.
Cell Death Differ ; 25(3): 573-588, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229999

RESUMO

Heme is required for cell respiration and survival. Nevertheless, its intracellular levels need to be finely regulated to avoid heme excess, which may catalyze the production of reactive oxygen species (ROS) and promote cell death. Here, we show that alteration of heme homeostasis in endothelial cells due to the loss of the heme exporter FLVCR1a, results in impaired angiogenesis. In vitro, FLVCR1a silencing in endothelial cells causes defective tubulogenesis and poor viability due to intracellular heme accumulation. Consistently, endothelial-specific Flvcr1a knockout mice show aberrant angiogenesis responsible for hemorrhages and embryonic lethality. Importantly, we demonstrate that impaired heme export leads to endothelial cell death by paraptosis and provide evidence that endoplasmic reticulum (ER) stress precedes heme-induced paraptosis. These findings highlight a crucial role for the cytosolic heme pool in the control of endothelial cell survival and in the regulation of the angiogenic process. Interfering with endothelial heme export represents a valuable model for a deeper understanding of the molecular mechanisms underlying heme-triggered paraptosis and, in the future, might provide a novel tool for the modulation of angiogenesis in pathophysiologic conditions.


Assuntos
Apoptose , Células Endoteliais/metabolismo , Heme/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neovascularização Patológica/metabolismo , Receptores Virais/metabolismo , Animais , Apoptose/genética , Células Cultivadas , Estresse do Retículo Endoplasmático/genética , Feminino , Heme/genética , Humanos , Masculino , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Receptores Virais/deficiência , Receptores Virais/genética
14.
Antioxid Redox Signal ; 23(18): 1410-23, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26067085

RESUMO

AIMS: The maintenance of heme homeostasis, mucosa cell renewal, and redox environment in the intestine is essential to permit digestion, absorption, cell proliferation, cell apoptosis, and immune response and to avoid the development of gut disorders. The feline leukemia virus, subgroup C, receptor 1a (FLVCR1a) is a heme exporter expressed in almost all cell types, including intestinal cells. This work investigates the role of FLVCR1a in the intestine, taking advantage of an intestine-specific conditional Flvcr1a-knockout mouse and of FLVCR1a-depleted Caco2 cells. RESULTS: The data show that FLVCR1a does not participate in the absorption of dietary heme, whereas it is involved in the export of de novo synthesized heme from intestinal cells. The loss of Flvcr1a is associated with a decrease of intestinal cell proliferation and with alterations in the peculiar homeostasis of proliferating cells, including the maintenance of their redox status. The involvement of FLVCR1a in these processes renders this exporter crucial for the survival of mice in a model of ulcerative colitis. INNOVATION: These findings shed light on the role of heme export in the dietary heme absorption process and unravel a new role for heme export in the control of mucosal renewal and in proliferating cell redox status and metabolic activity, demonstrating a crucial role for FLVCR1a in maintaining intestinal homeostasis in both physiologic and pathologic situations. CONCLUSION: By exporting the excess of de novo synthesized heme from intestinal cells, FLVCR1a participates in the control of intestinal mucosa homeostasis.


Assuntos
Heme/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/genética , Receptores Virais/genética , Animais , Células CACO-2 , Proliferação de Células , Técnicas de Inativação de Genes , Homeostase , Humanos , Intestinos/citologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Virais/metabolismo
15.
Front Pharmacol ; 5: 61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782769

RESUMO

Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multiple levels: synthesis, utilization by hemoproteins, degradation and both intracellular and intercellular trafficking. This review focuses on recent findings highlighting the importance of controlling intracellular heme levels to counteract heme-induced oxidative stress. The contributions of heme scavenging from the extracellular environment, heme synthesis and incorporation into hemoproteins, heme catabolism and heme transport in maintaining adequate intracellular heme content are discussed. Particular attention is put on the recently described mechanisms of heme trafficking through the plasma membrane mediated by specific heme importers and exporters. Finally, the involvement of genes orchestrating heme metabolism in several pathological conditions is illustrated and new therapeutic approaches aimed at controlling heme metabolism are discussed.

16.
Biochim Biophys Acta ; 1839(4): 259-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24576667

RESUMO

The tissue-specific gene expression changes mediated by the hypoxia inducible factors (HIFs) allow the adaptation of cells to low oxygen tension and control several processes including erythropoiesis, angiogenesis and vasculogenesis. The Feline Leukemia Virus, subgroup C, Receptor 1 (Flvcr1) gene encodes for two isoforms, Flvcr1a and 1b, involved in the export of heme out of the cell and of mitochondria respectively. Studies in mouse models demonstrated a crucial role of Flvcr1 isoforms in erythropoiesis and during embryo development. Here, we showed the modulation of Flvcr1 gene expression in different tissues and cell lines in response to hypoxia. Chromatin immunoprecipitation analysis demonstrated that HIF2α and HIF-dependent transcription factor ETS1 (v-ets avian erythroblastosis virus E26 oncogene homolog 1) bind at the region -318/+39 of the Flvcr1 promoter. Analysis of Caco2 cells in which HIF2α or ETS1 were silenced or overexpressed demonstrated that, both HIF2α and ETS1 are involved in the transcriptional regulation of Flvcr1a and that HIF2α is absolutely required for Flvcr1a induction upon hypoxia. The inclusion of the Flvcr1 gene in the group of HIF2α-responsive genes strengthens its role in hypoxia-stimulated processes like erythropoiesis, vasculogenesis and heme absorption.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Proteínas de Membrana Transportadoras/genética , Proteína Proto-Oncogênica c-ets-1/genética , Receptores Virais/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células CACO-2 , Desenvolvimento Embrionário , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Especificidade de Órgãos , Proteína Proto-Oncogênica c-ets-1/metabolismo , Receptores Virais/metabolismo
17.
PLoS One ; 8(6): e68146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826373

RESUMO

PURPOSE: The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. METHODS AND RESULTS: Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. CONCLUSIONS: The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.


Assuntos
Duodeno/metabolismo , Hemopexina/deficiência , Ferro/metabolismo , Animais , Apoferritinas/metabolismo , Osso e Ossos/metabolismo , Duodeno/citologia , Enterócitos/metabolismo , Heme/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Hemopexina/genética , Isótopos de Ferro , Fígado/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout
18.
Blood Cells Mol Dis ; 50(1): 25-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22921471

RESUMO

Ferroportin (FPN), the sole characterized iron exporter, is mainly controlled by the peptide hormone hepcidin in response to iron, erythroid factors, hypoxia, and inflammation. In addition, intracellular iron level controls FPN translation by modulating the binding of Iron Responsive Proteins at the 5'UTR of FPN mRNA. Recently, hypoxia inducible factor (HIF)2α has been shown to regulate FPN expression in intestinal cells. Here we show that, during experimentally-induced acute anemia in mice, FPN is regulated at transcriptional level in a cell-specific manner. FPN mRNA level increases in duodenum and spleen macrophages, whereas it does not change in liver and is strongly down-regulated in erythroid precursors. These results were confirmed in Caco2, Raw264.7 and K562 cells treated with a hypoxic stimulus. Moreover, we found a differential expression of HIF1α and HIF2α in cells and tissues that might account for the specificity of FPN regulation. Thus, hypoxia, by directly controlling hepcidin and its target FPN, orchestrates a complex regulatory network aimed at ensuring rapid iron recovery from the periphery and efficient iron utilization in the erythroid compartment.


Assuntos
Anemia/genética , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Doença Aguda , Anemia/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Duodeno/metabolismo , Regulação da Expressão Gênica , Hepcidinas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/metabolismo , Transcrição Gênica
19.
J Clin Invest ; 122(12): 4569-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23187127

RESUMO

Feline leukemia virus subgroup C receptor 1 (FLVCR1) is a cell membrane heme exporter that maintains the balance between heme levels and globin synthesis in erythroid precursors. It was previously shown that Flvcr1-null mice died in utero due to a failure of erythropoiesis. Here, we identify Flvcr1b, a mitochondrial Flvcr1 isoform that promotes heme efflux into the cytoplasm. Flvcr1b overexpression promoted heme synthesis and in vitro erythroid differentiation, whereas silencing of Flvcr1b caused mitochondrial heme accumulation and termination of erythroid differentiation. Furthermore, mice lacking the plasma membrane isoform (Flvcr1a) but expressing Flvcr1b had normal erythropoiesis, but exhibited hemorrhages, edema, and skeletal abnormalities. Thus, FLVCR1b regulates erythropoiesis by controlling mitochondrial heme efflux, whereas FLVCR1a expression is required to prevent hemorrhages and edema. The aberrant expression of Flvcr1 isoforms may play a role in the pathogenesis of disorders characterized by an imbalance between heme and globin synthesis.


Assuntos
Diferenciação Celular , Eritrócitos/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Mitocondriais/fisiologia , Receptores Virais/fisiologia , Anormalidades Múltiplas/genética , Animais , Doenças do Desenvolvimento Ósseo/genética , Encéfalo/metabolismo , Edema/genética , Eritrócitos/metabolismo , Eritropoese , Éxons , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Heme/metabolismo , Hemorragia/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Receptores Virais/genética , Receptores Virais/metabolismo
20.
Eur J Nutr ; 51(7): 783-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22009264

RESUMO

BACKGROUND: The study of iron metabolism is essential in nutritional sciences as iron deficiency is one of the most common nutritional deficiencies in humans and represents a serious health problem worldwide. The mouse is utilized as a unique and powerful model for the identification and characterization of genes involved in iron metabolism and for studying the pathogenesis of iron disorders. Thus, sophisticated and sensitive techniques have been developed to study iron metabolism in this animal model. In particular, iron absorption has been studied in mice by using the radioisotopes (55)Fe and (59)Fe in tied-off or dissected and everted duodenal segments. Nevertheless, several drawbacks discourage the extended use of these approaches. METHODS AND RESULTS: Here, we report the use of the stable isotope (57)Fe to measure iron absorption in mice. We show that after oral administration of (57)Fe-containing solutions, it is possible to measure both duodenal iron retention and duodenal iron transfer to specific organs, using inductively coupled plasma mass spectrometry (ICP-MS). As (57)Fe is administered orally, no surgical operation is needed before the end of the experiment, thus allowing the measurement of iron absorption under physiologic conditions. Moreover, the use of ICP-MS for (57)Fe detection ensures high sensitivity and provides quantitative data. Finally, the use of a stable isotope enables the measurement of both iron absorption and histologic and/or biochemical analyses in the same animal. CONCLUSIONS: The use of (57)Fe to measure iron absorption in mice, therefore, represents an alternative to radioisotope-based methods, providing a new tool to extend our knowledge on the mechanism of iron absorption.


Assuntos
Ferro/administração & dosagem , Ferro/farmacocinética , Espectrometria de Massas/métodos , Absorção , Administração Oral , Animais , Relação Dose-Resposta a Droga , Duodeno/metabolismo , Absorção Intestinal , Ferro/sangue , Isótopos de Ferro/administração & dosagem , Isótopos de Ferro/sangue , Isótopos de Ferro/farmacocinética , Camundongos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...