Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 2933015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265109

RESUMO

Lyme disease is one of the most common vector-borne infections. It typically causes cardiac illnesses, neurologic illnesses, musculoskeletal disorders, and dermatologic conditions. However, most of the time, it is poorly diagnosed due to many similarities with other diseases such as drug rash. Given the potentially serious consequences of unnecessary antimicrobial treatments, it is essential to understand frequent and uncommon diagnoses that explain symptoms in this population. Recently, deep learning models have been used for the diagnosis of various rash-related diseases. However, these models suffer from overfitting and color variation problems. To overcome these problems, an efficient stacked deep transfer learning model is proposed that can efficiently distinguish between patients infected with Lyme (+) or infected with other infections. 2nd order edge-based color constancy is used as a preprocessing approach to reduce the impact of multisource light from images acquired under different setups. The AlexNet pretrained learning model is used for building the Lyme disease diagnosis model. To prevent overfitting, data augmentation techniques are also used to augment the dataset. In addition, 5-fold cross-validation is also used. Comparative analysis indicates that the proposed model outperforms the existing models in terms of accuracy, f-measure, sensitivity, specificity, and area under the curve.


Assuntos
Doença de Lyme , Redes Neurais de Computação , Humanos , Doença de Lyme/diagnóstico , Aprendizado de Máquina , Tomografia Computadorizada por Raios X
2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264106

RESUMO

In this paper we use the technique of functional data analysis to model daily hospitalized, deceased, ICU cases and return home patient numbers along the COVID-19 outbreak, considered as functional data across different departments in France while our response variables are numbers of vaccinations, deaths, infected, recovered and tests in France. These sets of data were considered before and after vaccination started in France. We used some smoothing techniques to smooth our data set, then analysis based on functional principal components method was performed, clustering using k-means techniques was done to understand the dynamics of the pandemic in different French departments according to their geographical location on France map and we also performed canonical correlations analysis between variables. Finally, we made some predictions to assess the accuracy of the method using functional linear regression models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...