Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134528, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733785

RESUMO

In the United States, dangerously high arsenic (As) levels have been found in drinking water wells in more than 25 states, potentially exposing 2.1 million people to drinking water high in As; a known carcinogen. The anticipated sea-level rise (SLR) is expected to alter soil biogeochemical and hydrological conditions, potentially impacting their ability to sequester As. In our study of coastal Wilmington, DE, an area projected to experience a 1 -meter SLR by 2100, we examined the spatial distribution, speciation, and release possibilities of As due to SLR. To understand the complex dynamics at play, we employed a comprehensive approach, including bulk and micro X-ray absorption spectroscopy measurements, hydrological pattern evaluation, and macroscopic stirred-flow experiments. Our results suggest that introducing reducing and saline conditions can increase As release in both river water and seawater inundation scenarios, most likely due to ionic competition and the dissolution of As-bearing Fe/Mn oxides. Regardless of the salinity source, the released As concentrations consistently exceeded the EPA threshold for drinking water. Our results provide valuable insights for developing appropriate remedial and management strategies for this site and numerous others facing similar environmental challenges. ENVIRONMENTAL IMPLICATION: With nearly two hundred million individuals living within coastal flood plains and with two million square kilometers of land and one trillion dollars' worth of assets lying less than 1 m above current sea level, sea-level rise (SLR) is one of the significant socio-economic threats associated with global warming. Arsenic is a prevalent contaminant in coastal areas impacted by industrial activities, many of which are susceptible to being impacted by SLR. This study examines SLR's impact on arsenic fate and speciation in a densely populated coastline in Wilmington, DE, expecting 1 meter of SLR by 2100.


Assuntos
Arsênio , Água do Mar , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Solo/química , Monitoramento Ambiental
2.
Toxics ; 12(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38787126

RESUMO

Red mud is an industrial solid waste rarely utilized and often disposed of in landfills, resulting in resource waste and environmental pollution. However, due to its high pH and abundance of iron and aluminum oxides and hydroxides, red mud has excellent adsorption properties which can effectively remove heavy metals through ion exchange, adsorption, and precipitation. Therefore, red mud is a valuable resource rather than a waste byproduct. In recent years, red mud has been increasingly studied for its potential in wastewater treatment and soil improvement. Red mud can effectively reduce the migration and impact of heavy metals in soils and water bodies. This paper reviews the research results from using red mud to mitigate cadmium pollution in water bodies and soils, discusses the environmental risks of red mud, and proposes key research directions for the future management of red mud in cadmium-contaminated environments.

3.
Sci Total Environ ; 931: 172624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657812

RESUMO

Sea level rise (SLR) promotes saltwater intrusion (SWI) into coastal soils globally at an increasing rate, impacting phosphorus (P) dynamics and adjacent water quality. However, how SWI influences P molecular speciation and availability in coastal soils remains poorly understood. By using a space-for-time substitution strategy, we evaluated the SWI impacts on P transformation along a SWI gradient at the Rehoboth Inland Bay, which consists of five sampling locations along a transect representing different SWI degrees. Soils were analyzed at the macro- and micro-scale using X-ray absorption near edge spectroscopy (XANES) and the modified Hedley fractionation. With increasing distance from the Bay, soil salinity (29.3-0.07 mmhos cm-1), the proportion of Fe3+ to total Fe, and P concentrations decreased. The fractionation showed that recalcitrant P was dominant (86.9-89.5% of total P). With increasing SWI, labile P increased gradually, reached a plateau, and then decreased sharply. Bulk XANES spectroscopy showed that soil P was likely dominated by iron and aluminum-associated P (Fe/Al-P), regardless of the SWI degree. Hence, with increasing SWI, P increasingly accumulated in a recalcitrant pool, mainly as Fe/Al-P. µ-XANES spectroscopy revealed that calcium-associated P (Ca-P) existed in P-rich spots of the greatest SWI soil while Al-P occurred in P-rich spots of the low SWI soil, consistent with the greater HCl-P (presumably Ca-P) in the former soil. Overall, results demonstrate that SWI impacts P availability and environmental risk in coastal soils depending on the degree of SWI. These findings have important implications for understanding soil P cycling and availability in SLR-impacted coastal areas.

4.
Environ Sci Technol ; 58(9): 4155-4166, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385246

RESUMO

Permafrost soils store ∼50% of terrestrial C, with Yedoma permafrost containing ∼25% of the total C. Permafrost is undergoing degradation due to thawing, with potentially hazardous effects on landscape stability and water resources. Complicating ongoing efforts to project the ultimate fate of deep permafrost C is the poorly constrained role of the redox environment, Fe-minerals, and its redox-active phases, which may modulate organic C-abundance, composition, and reactivity through complexation and catalytic processes. We characterized C fate, Fe fractions, and dissolved organic matter (DOM) isolates from permafrost-thaw under varying redox conditions. Under anoxic incubation conditions, 33% of the initial C was lost as gaseous species within 21 days, while under oxic conditions, 58% of C was lost. Under anoxic incubation, 42% of the total initial C was preserved in a dissolved fraction. Lignin-like compounds dominated permafrost-thaw, followed by lipid- and protein-like compounds. However, under anoxic incubation conditions, there was accumulation of lipid-like compounds and reduction in the nominal oxidation state of C over time, regardless of the compound classes. DOM dynamics may be affected by microbial activity and abiotic processes mediated by Fe-minerals related to selective DOM fractionation and/or its oxidation. Chemodiversity DOM signatures could serve as valuable proxies to track redox conditions with permafrost-thaw.


Assuntos
Pergelissolo , Ferro , Matéria Orgânica Dissolvida , Carbono , Minerais , Oxirredução , Lipídeos , Solo
5.
Environ Pollut ; 268(Pt B): 115944, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160733

RESUMO

Cadmium bioavailability in paddy soils is strongly affected by flooding-draining cycle. In this study, we used synchrotron-based X-ray absorption spectroscopy and a stirred-flow method to investigate the effects of flooding-draining and amendments of CaCO3 and CaSO4 on Cd speciation and release kinetics from a Cd-spiked paddy soil (total Cd concentration of 165 mg kg-1). Extended X-ray absorption fine structure analysis showed that Cd was predominantly bound to non-iron-clay minerals (e.g. Cd-kaolinite, Cd-illite, and Cd-montmorillonite, accounting for 60-100%) in the air-dried soil and 1- or 7-day flooded samples. After prolonged flooding (30 and 120 days), Cd-iron mineral complexes (e.g. Cd bound to ferrihydrite and goethite) became the predominant species (accounting for 52-100%). Stirred-flow kinetic analysis showed that both prolonged flooding and the amendments with CaCO3 and CaSO4 decreased the maximum amount and the rate coefficient of Cd release. However, the effect of prolonged flooding was reversed after a short period of draining, indicating that although Cd was immobilized during flooding, it became mobile rapidly after the soil was drained, possibly due to pH decrease and rapid oxidation of CdS. The effects of the amendments on Cd uptake in rice plants were tested in a pot experiment using the same paddy soil without Cd spiking (total Cd 2.1 mg kg-1). Amendment with CaCO3 and, to a lesser extent, CaSO4, decreased the Cd accumulation in two cultivars of rice. The combination of CaCO3 amendment and a low Cd accumulating cultivar was effective at limiting grain Cd concentration to below the 0.2 mg kg-1 limit.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Cinética , Solo , Poluentes do Solo/análise
6.
Environ Sci Technol ; 54(5): 2951-2960, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32023050

RESUMO

Permafrost contains a large (1700 Pg C) terrestrial pool of organic matter (OM) that is susceptible to degradation as global temperatures increase. Of particular importance is syngenetic Yedoma permafrost containing high OM content. Reactive iron phases promote stabilizing interactions between OM and soil minerals and this stabilization may be of increasing importance in permafrost as the thawed surface region ("active layer") deepens. However, there is limited understanding of Fe and other soil mineral phase associations with OM carbon (C) moieties in permafrost soils. To elucidate the elemental associations involved in organomineral complexation within permafrost systems, soil cores spanning a Pleistocene permafrost chronosequence (19,000, 27,000, and 36,000 years old) were collected from an underground tunnel near Fairbanks, Alaska. Subsamples were analyzed via scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy at the nano- to microscale. Amino acid-rich moieties decreased in abundance across the chronosequence. Strong correlations between C and Fe with discrete Fe(III) or Fe(II) regions selectively associated with specific OM moieties were observed. Additionally, Ca coassociated with C through potential cation bridging mechanisms. Results indicate Fe(III), Fe(II), and mixed valence phases associated with OM throughout diverse permafrost environments, suggesting that organomineral complexation is crucial to predict C stability as permafrost systems warm.


Assuntos
Pergelissolo , Alaska , Carbono , Compostos Férricos , Solo
7.
Geochem Trans ; 16: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388696

RESUMO

BACKGROUND: Manganese-oxides are one of the most important minerals in soil due to their widespread distribution and high reactivity. Despite their invaluable role in cycling many redox sensitive elements, numerous unknowns remain about the reactivity of different manganese-oxide minerals under varying conditions in natural systems. By altering temperature, pH, and concentration of arsenite we were able to determine how manganese-oxide reactivity changes with simulated environmental conditions. The interaction between manganese-oxides and arsenic is particularly important because manganese can oxidize mobile and toxic arsenite into more easily sorbed and less toxic arsenate. This redox reaction is essential in understanding how to address the global issue of arsenic contamination in drinking water. RESULTS: The reactivity of manganese-oxides in ascending order is random stacked birnessite, hexagonal birnessite, biogenic manganese-oxide, acid birnessite, and δ-MnO2. Increasing temperature raised the rate of oxidation. pH had a variable effect on the production of arsenate and mainly impacted the sorption of arsenate on δ-MnO2, which decreased with increasing pH. Acid birnessite oxidized the most arsenic at alkaline and acidic pHs, with decreased reactivity towards neutral pH. The δ-MnO2 showed a decline in reactivity with increasing arsenite concentration, while the acid birnessite had greater oxidation capacity under higher concentrations of arsenite. The batch reactions used in this study quantify the impact of environmental variances on different manganese-oxides' reactivity and provide insight to their roles in governing chemical cycles in the Critical Zone. CONCLUSIONS: The reactivity of manganese-oxides investigated was closely linked to each mineral's crystallinity, surface area, and presence of vacancy sites. δ-MnO2 and acid birnessite are thought to be synthetic representatives of naturally occurring biogenic manganese-oxides; however, the biogenic manganese-oxide exhibited a lag time in oxidation compared to these two minerals. Reactivity was clearly linked to temperature, which provides important information on how these minerals react in the subsurface environment. The pH affected oxidation rate, which is essential in understanding how manganese-oxides react differently in the environment and their potential role in remediating contaminated areas. Moreover, the contrasting oxidative capacity of seemingly similar manganese-oxides under varying arsenite concentrations reinforces the importance of each manganese-oxide mineral's unique properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...