Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657812

RESUMO

Sea level rise (SLR) promotes saltwater intrusion (SWI) into coastal soils globally at an increasing rate, impacting phosphorus (P) dynamics and adjacent water quality. However, how SWI influences P molecular speciation and availability in coastal soils remains poorly understood. By using a space-for-time substitution strategy, we evaluated the SWI impacts on P transformation along a SWI gradient at the Rehoboth Inland Bay, which consists of five sampling locations along a transect representing different SWI degrees. Soils were analyzed at the macro- and micro-scale using X-ray absorption near edge spectroscopy (XANES) and the modified Hedley fractionation. With increasing distance from the Bay, soil salinity (29.3-0.07 mmhos cm-1), the proportion of Fe3+ to total Fe, and P concentrations decreased. The fractionation showed that recalcitrant P was dominant (86.9-89.5% of total P). With increasing SWI, labile P increased gradually, reached a plateau, and then decreased sharply. Bulk XANES spectroscopy showed that soil P was likely dominated by iron and aluminum-associated P (Fe/Al-P), regardless of the SWI degree. Hence, with increasing SWI, P increasingly accumulated in a recalcitrant pool, mainly as Fe/Al-P. µ-XANES spectroscopy revealed that calcium-associated P (Ca-P) existed in P-rich spots of the greatest SWI soil while Al-P occurred in P-rich spots of the low SWI soil, consistent with the greater HCl-P (presumably Ca-P) in the former soil. Overall, results demonstrate that SWI impacts P availability and environmental risk in coastal soils depending on the degree of SWI. These findings have important implications for understanding soil P cycling and availability in SLR-impacted coastal areas.

2.
Environ Sci Technol ; 54(5): 2951-2960, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32023050

RESUMO

Permafrost contains a large (1700 Pg C) terrestrial pool of organic matter (OM) that is susceptible to degradation as global temperatures increase. Of particular importance is syngenetic Yedoma permafrost containing high OM content. Reactive iron phases promote stabilizing interactions between OM and soil minerals and this stabilization may be of increasing importance in permafrost as the thawed surface region ("active layer") deepens. However, there is limited understanding of Fe and other soil mineral phase associations with OM carbon (C) moieties in permafrost soils. To elucidate the elemental associations involved in organomineral complexation within permafrost systems, soil cores spanning a Pleistocene permafrost chronosequence (19,000, 27,000, and 36,000 years old) were collected from an underground tunnel near Fairbanks, Alaska. Subsamples were analyzed via scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy at the nano- to microscale. Amino acid-rich moieties decreased in abundance across the chronosequence. Strong correlations between C and Fe with discrete Fe(III) or Fe(II) regions selectively associated with specific OM moieties were observed. Additionally, Ca coassociated with C through potential cation bridging mechanisms. Results indicate Fe(III), Fe(II), and mixed valence phases associated with OM throughout diverse permafrost environments, suggesting that organomineral complexation is crucial to predict C stability as permafrost systems warm.


Assuntos
Pergelissolo , Alaska , Carbono , Compostos Férricos , Solo
3.
Geochem Trans ; 16: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388696

RESUMO

BACKGROUND: Manganese-oxides are one of the most important minerals in soil due to their widespread distribution and high reactivity. Despite their invaluable role in cycling many redox sensitive elements, numerous unknowns remain about the reactivity of different manganese-oxide minerals under varying conditions in natural systems. By altering temperature, pH, and concentration of arsenite we were able to determine how manganese-oxide reactivity changes with simulated environmental conditions. The interaction between manganese-oxides and arsenic is particularly important because manganese can oxidize mobile and toxic arsenite into more easily sorbed and less toxic arsenate. This redox reaction is essential in understanding how to address the global issue of arsenic contamination in drinking water. RESULTS: The reactivity of manganese-oxides in ascending order is random stacked birnessite, hexagonal birnessite, biogenic manganese-oxide, acid birnessite, and δ-MnO2. Increasing temperature raised the rate of oxidation. pH had a variable effect on the production of arsenate and mainly impacted the sorption of arsenate on δ-MnO2, which decreased with increasing pH. Acid birnessite oxidized the most arsenic at alkaline and acidic pHs, with decreased reactivity towards neutral pH. The δ-MnO2 showed a decline in reactivity with increasing arsenite concentration, while the acid birnessite had greater oxidation capacity under higher concentrations of arsenite. The batch reactions used in this study quantify the impact of environmental variances on different manganese-oxides' reactivity and provide insight to their roles in governing chemical cycles in the Critical Zone. CONCLUSIONS: The reactivity of manganese-oxides investigated was closely linked to each mineral's crystallinity, surface area, and presence of vacancy sites. δ-MnO2 and acid birnessite are thought to be synthetic representatives of naturally occurring biogenic manganese-oxides; however, the biogenic manganese-oxide exhibited a lag time in oxidation compared to these two minerals. Reactivity was clearly linked to temperature, which provides important information on how these minerals react in the subsurface environment. The pH affected oxidation rate, which is essential in understanding how manganese-oxides react differently in the environment and their potential role in remediating contaminated areas. Moreover, the contrasting oxidative capacity of seemingly similar manganese-oxides under varying arsenite concentrations reinforces the importance of each manganese-oxide mineral's unique properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...