Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399735

RESUMO

The production of isolated metallic nanoparticles with multifunctionalized properties, such as size and shape, is crucial for biomedical, photocatalytic, and energy storage or remediation applications. This study investigates the initial particle formations of gold nanoparticles (AuNPs) bioproduced in the cyanobacteria Anabaena sp. using high-resolution transmission electron microscopy images for digital image analysis. The developed method enabled the discovery of cerium nanoparticles (CeNPs), which were biosynthesized in the cyanobacteria Calothrix desertica. The particle size distributions for AuNPs and CeNPs were analyzed. After 10 h, the average equivalent circular diameter for AuNPs was 4.8 nm, while for CeNPs, it was approximately 5.2 nm after 25 h. The initial shape of AuNPs was sub-round to round, while the shape of CeNPs was more roundish due to their amorphous structure and formation restricted to heterocysts. The local PSDs indicate that the maturation of AuNPs begins in the middle of vegetative cells and near the cell membrane, compared to the other regions of the cell.

2.
NanoImpact ; 26: 100398, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35560296

RESUMO

Samarium (Sm) is one of the most sought-after rare earth metals. Price trends and dwindling resources are making recovery increasingly attractive. In this context, the use of cyanobacteria is highly promising. For Sm it was unclear whether Anabaena cylindrica produces particles through metabolically active Sm3+ uptake. High-resolution (HR) imaging now clearly demonstrates microbe generated biosynthesis of Sm nano-sized particles (Sm NPs) in vivo. Furthermore, a simple method to determine particle size and shape with high accuracy is presented. Digital image analysis with ImageJ of HR-TEMs is used to characterize Sm NPs revealing a nearly uniform local size distribution. Assuming round particles, the overall average area size is 135.5 nm2, resp. 11.9 nm diameter. In HR, where different cell sections of the same cell are averaged, the mean particle is smaller, 76.7 nm2 resp. 8.9 nm diameter. The reciprocal aspect ratio is 0.63. The Feret major axis ratio is calculated as shape factor, with 35% of the particles between 1.2 and 1.4. A roundness classification shows that 38% of particles are fairly round and 41% are very round. Consequently, A. cylindrica represents a suitable microorganism for possible Sm recovery and biosynthesis of roundish nano-sized particles.


Assuntos
Anabaena cylindrica , Cianobactérias , Nanopartículas , Tamanho da Partícula , Samário
3.
Nanomaterials (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616040

RESUMO

Herein, the particle size distributions (PSDs) and shape analysis of in vivo bioproduced particles from aqueous Au3+ and Eu3+ solutions by the cyanobacterium Anabaena sp. are examined in detail at the nanoscale. Generally, biosynthesis is affected by numerous parameters. Therefore, it is challenging to find the key set points for generating tailored nanoparticles (NPs). PSDs and shape analysis of the Au and Eu-NPs were performed with ImageJ using high-resolution transmission electron microscopy (HR-TEM) images. As the HR-TEM image analysis reflects only a fraction of the detected NPs within the cells, additional PSDs of the complete cell were performed to determine the NP count and to evaluate the different accuracies. Furthermore, local PSDs were carried out at five randomly selected locations within a single cell to identify local hotspots or agglomerations. The PSDs show that particle size depends mainly on contact time, while the particle shape is hardly affected. The particles formed are distributed quite evenly within the cells. HR-PSDs for Au-NPs show an average equivalent circular diameter (ECD) of 8.4 nm (24 h) and 7.2 nm (51 h). In contrast, Eu-NPs preferably exhibit an average ECD of 10.6 nm (10 h) and 12.3 nm (244 h). Au-NPs are classified predominantly as "very round" with an average reciprocal aspect ratio (RAR) of ~0.9 and a Feret major axis ratio (FMR) of ~1.17. Eu-NPs mainly belong to the "rounded" class with a smaller RAR of ~0.6 and a FMR of ~1.3. These results show that an increase in contact time is not accompanied by an average particle growth for Au-NPs, but by a doubling of the particle number. Anabaena sp. is capable of biosorbing and bioreducing dissolved Au3+ and Eu3+ ions from aqueous solutions, generating nano-sized Au and Eu particles, respectively. Therefore, it is a low-cost, non-toxic and effective candidate for a rapid recovery of these sought-after metals via the bioproduction of NPs with defined sizes and shapes, providing a high potential for scale-up.

4.
Polymers (Basel) ; 13(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204089

RESUMO

Polyamide 6 (PA6) is a commonly used material in many different sectors of modern industry. Herein, PA6 samples were coated with amorphous carbon layers (a-C:H) with increasing thickness up to 2 µm using radio frequency plasma enhanced chemical vapor deposition for surface adjustment. The morphology of the carbon coatings was inspected by ex situ atomic force microscopy and scanning electron microscopy. Surface wettability was checked by contact angle measurements. The chemical composition was analyzed using the surface sensitive synchrotron X-ray-based techniques near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy, supported by diffuse reflectance infrared Fourier transform spectroscopy. Particular attention was paid to the coating interval from 0 to 100 nm, to specify the interlayer thickness between the PA6 polymer and a-C:H coating, and the region between 1000 and 2000 nm, where dehydrogenation of the a-C:H layer occurs. The interlayer is decisive for the linkage of the deposited carbon layer on the polymer: the more pronounced it is, the better the adhesion. The thickness of the interlayer could be narrowed down to 40 nm in all used methods, and the dehydrogenation process takes place at a layer thickness of 1500 nm.

5.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419232

RESUMO

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and commercially used polymer, which in its native form is unfortunately not generally applicable. A widely used technique to adapt polymers to a wider range of applications is the surface modification with amorphous hydrogenated carbon (a-C:H) layers, realized by plasma-enhanced chemical vapor deposition (PE-CVD). However, this process creates intrinsic stress in the layer-polymer system which can even lead to full layer failure. The aim of this study was to investigate how the carbon layer is affected when the basic polymer film to be coated can follow the stress and bend (single side attachment) and when it cannot do so because it is firmly clamped (full attachment). For both attachment methods, the a-C:H layers were simultaneously deposited on PHB samples. Ex-situ characterization was performed using a scanning electron microscope (SEM) for surface morphology and contact angle (CA) measurements for wettability. In addition, the stress prevailing in the layer was calculated using the Stoney equation. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) measurements were used to investigate the chemical composition of the coating surface.

6.
Materials (Basel) ; 13(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121126

RESUMO

The increasing use of polymers is related to a growing disposal problem. Switching to biodegradable polymers such as polybutylene adipate terephthalate (PBAT) is a feasible possibility, but after industrial production of commercially available material PBAT is not suitable for every application. Therefore, surface refinements with amorphous hydrogenated carbon films (a-C:H) produced by plasma-assisted chemical vapor deposition (PE-CVD) changing the top layer characteristics are used. Here, 50 µm-thick PBAT films are coated with a-C:H layers up to 500 nm in 50 nm steps. The top surface sp2/sp3 bonding ratios are analyzed by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) both synchrotron-based. In addition, measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) were performed for detailed chemical composition. Surface topography was analyzed by scanning electron microscopy (SEM) and the surface wettability by contact angle measurements. With increasing a-C:H layer thickness not only does the topography change but also the sp2 to sp3 ratio, which in combination indicates internal stress-induced phenomena. The results obtained provide a more detailed understanding of the mostly inorganic a-C:H coatings on the biodegradable organic polymer PBAT via in situ growth and stepwise height-dependent analysis.

8.
Anal Bioanal Chem ; 411(28): 7409-7418, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31489440

RESUMO

Identification and quantification of microplastics (MP) in environmental samples is crucial for understanding the risk and distribution of MP in the environment. Currently, quantification of MP particles in environmental samples and the comparability of different matrices is a major research topic. Research also focusses on sample preparation, since environmental samples must be free of inorganic and organic matrix components for the MP analysis. Therefore, we would like to propose a new method that allows the comparison of the results of MP analysis from different environmental matrices and gives a MP concentration in mass of MP particles per gram of environmental sample. This is possible by developing and validating an optimized and consistent sample preparation scheme for quantitative analysis of MP particles in environmental model samples in conjunction with quantitative 1H-NMR spectroscopy (qNMR). We evaluated for the first time the effects of different environmental matrices on identification and quantification of polyethylene terephthalate (PET) fibers using the qNMR method. Furthermore, high recovery rates were obtained from spiked environmental model samples (without matrix ~ 90%, sediment ~ 97%, freshwater ~ 94%, aquatic biofilm ~ 95%, and invertebrate matrix ~ 72%), demonstrating the high analytical potential of the method. Graphical abstract.

9.
RSC Adv ; 9(56): 32581-32593, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529743

RESUMO

In the recovery of rare earth elements (REE) microbial biosorption has shown its theoretical ability as an extremely economically and environmentally friendly production method in the last few years. To evaluate the ability of two cyanobacterial strains, namely Anabaena spec. and Anabaena cylindrica to enrich dissolved trivalent REE, a simple protocol was followed. The REE tested in this study include some of the most prominent representatives, such as europium (Eu), samarium (Sm) and neodymium (Nd). Within the experiments, a fast decrease of the REE3+ concentration in solution was tracked by inductively coupled plasma mass spectrometry (ICP-MS). It revealed an almost complete (>99%) biosorption of REE3+ within the first hour after the addition of metal salts. REE3+ uptake by biomass was checked using laser-induced breakdown spectroscopy (LIBS) and showed that all three selected REE3+ species were enriched in the cyanobacterial biomass and the process is assigned to a biosorption process. Although the biomass stayed alive during the experiments, up to that, a distinction whether the REE3+ was intra- or extracellularly sorbed was not possible, since biosorption is a metabolism independent process which occurs on living as well as non-living biomass. For europium it was shown by TEM that electron dense particles, presumably europium particles with particle sizes of about 15 nm, are located inside the vegetative cyanobacterial cells. This gave clear evidence that Eu3+ was actively sorbed by living cyanobacteria. Eu3+ biosorption by cell wall precipitation due to interaction with extracellular polysaccharides (EPS) could therefore be excluded. Finally, with XRD analysis it was shown that the detected europium particles had an amorphous instead of a crystalline structure. Herein, we present a fast biosorptive enrichment of the rare earth elements europium, samarium and neodymium by Anabaena spec. and Anabaena cylindrica and for the first time the subsequent formation of intracellular europium particles by Anabaena spec.

10.
Beilstein J Nanotechnol ; 7: 312-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335727

RESUMO

Microbial biosynthesis of metal nanoparticles as needed in catalysis has shown its theoretical ability as an extremely environmentally friendly production method in the last few years, even though the separation of the nanoparticles is challenging. Biosynthesis, summing up biosorption and bioreduction of diluted metal ions to zero valent metals, is especially ecofriendly, when the bioreactor itself is harmless and needs no further harmful reagents. The cyanobacterium Anabaena cylindrica (SAG 1403.2) is able to form crystalline Au(0)-nanoparticles from Au(3+) ions and does not release toxic anatoxin-a. X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and laser-induced breakdown spectroscopy (LIBS) are applied to monitor the time-dependent development of gold nanoparticles for up to 40 hours. Some vegetative cells (VC) are filled with nanoparticles within minutes, while the extracellular polymeric substances (EPS) of vegetative cells and the heterocyst polysaccharide layer (HEP) are the regions, where the first nanoparticles are detected on most other cells. The uptake of gold starts immediately after incubation and within four hours the average size remains constant around 10 nm. Analyzing the TEM images with an image processing program reveals a wide distribution for the diameter of the nanoparticles at all times and in all regions of the cyanobacteria. Finally, the nanoparticle concentration in vegetative cells of Anabaena cylindrica is about 50% higher than in heterocysts (HC). These nanoparticles are found to be located along the thylakoid membranes.

11.
ACS Appl Mater Interfaces ; 8(16): 10636-46, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27058762

RESUMO

Diamond-like carbon (DLC) films on polyethylene terephthalate (PET) are nowadays intensively studied composites due to their excellent gas barrier properties and biocompatibility. Despite their applicative features being highly explored, the interface properties and structural film evolution of DLC coatings on PET during deposition processes are still sparsely investigated. In this study two different types of DLC films were gradually deposited on PET by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) using acetylene plasma. The surface morphology of the deposited samples has been analyzed by atomic force microscopy (AFM). Their chemical composition was investigated by diffusive reflectance infrared Fourier transform (DRIFT) and Raman spectroscopy analysis and the surface wettability by contact angle measurements. Subplantation processes and interface effects are revealed through the morphological and chemical analysis of both types. During plasma deposition processes the increasing carbon load causes the rise of intrinsic film stress. It is proven that stress release phenomena cause the transition between polymer-like to a more cross-linked DLC network by folding dehydrogenated chains into closed 6-fold rings. These findings significantly lead to an enhanced understanding in DLC film growth mechanism by RF-PECVD processes.

12.
Chemistry ; 12(22): 5779-84, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-16718731

RESUMO

The kinetics of the reaction of several alcohols (benzyl alcohol, ethanol, 1-phenylethanol, cyclohexanol, and 1-methyl-1-phenylethanol) with a selection of anhydrides (acetic anyhydride, propionic anhydride, isobutyric anhydride, isovaleric anhydride, and pivalic anhydride) as catalyzed by 4-(N,N-dimethylamino)pyridine (DMAP)/triethyl amine have been studied in CH(2)Cl(2) at 20 degrees C. In all cases the reaction kinetics can be described by rate laws containing a DMAP-catalyzed term and an uncatalyzed (background) term. The rate constants for the background reaction respond sensitively to changes in the steric demand of the alcohol and the anhydride substrates, making the reaction of cyclohexanol with acetic anhydride 526 times faster than the reaction with pivalic anhydride. Steric effects are even larger for the catalyzed reaction and the reactivity difference between acetic and pivalic anhydride exceeds a factor of 8000 for the reaction of cyclohexanol. There is, however, no linear correlation between the steric effects on the catalyzed and the uncatalyzed part. As a consequence there are substrate combinations with dominating catalytic terms (such as the reaction of benzyl alcohol with isobutyric anhydride), while other substrate combinations (such as the reaction of cyclohexanol with pivalic anhydride) are characterized through a dominating background process. The implications of these findings for the kinetic resolution of alcohols are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...