Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(52): 16132-16135, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27885780

RESUMO

Herein we present the preparation and characterization of three new bispyrazolyl-based energetic compounds with great potential as explosive materials. The reaction of sodium 4-amino-3,5-dinitropyrazolate (5) with dimethyl iodide yielded bis(4-amino-3,5-dinitropyrazolyl)methane (6), which is a secondary explosive with high heat resistance (Tdec =310 °C). The oxidation of this compound afforded bis(3,4,5-trinitropyrazolyl)methane (7), which is a combined nitrogen- and oxygen-rich secondary explosive with very high theoretical and estimated experimental detonation performance (Vdet (theor)=9304 m s-1 versus Vdet (exp)=9910 m s-1 ) in the range of that of CL-20. Also, the thermal stability (Tdec =205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4-diazo-5-nitro-3-oxopyrazolyl)methane (8), which showed superior properties to those of currently used diazodinitrophenol (DDNP).

2.
Chemistry ; 22(14): 4966-70, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26916985

RESUMO

1,1'-Dinitramino-5,5'-bitetrazole and 1,1'-dinitramino-5,5'-azobitetrazole were synthesized for the first time. The neutral compounds are extremely sensitive and powerful explosives. Selected nitrogen-rich salts were prepared to adjust sensitivity and performance values. The compounds were characterized by low-temperature X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and DTA/DSC. Calculated energetic performances using the EXPLO5 code based on calculated (CBS-4M) heats of formation and X-ray densities support the high performances of the 1,1'-dinitramino-5,5'-bitetrazoles as energetic materials. The sensitivities toward impact, friction, and electrostatic discharge were also explored. Most of the compounds show sensitivities in the range of primary explosives and should only be handled with great care!

3.
Chem Commun (Camb) ; 52(5): 916-8, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581622

RESUMO

Tetranitratoethane (C2H2N4O12), which has an oxygen content of 70.1% was synthesized by nitration of monomeric glyoxal using N2O5 and purified by sublimation. Single crystals could be grown from CH2Cl2/pentane and were used to determine the structure by X-ray diffraction. Several energetic parameters and values were also established.

4.
Angew Chem Int Ed Engl ; 54(35): 10299-302, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26095124

RESUMO

Highly energetic 1,5-di(nitramino)tetrazole and its salts were synthesized. The neutral compound is very sensitive and one of the most powerful non-nuclear explosives to date. Selected nitrogen-rich and metal salts were prepared. The potassium salt can be used as a sensitizer in place of tetracene. The obtained compounds were characterized by low-temperature X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and DSC. Calculated energetic performances using the EXPLO5 code based on calculated (CBS-4M) heats of formation and X-ray densities support the high energetic performances of the 1,5-dinitraminotetrazolates as energetic materials. The sensitivities towards impact, friction, and electrostatic discharge were also explored.

5.
Angew Chem Int Ed Engl ; 53(31): 8172-5, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985491

RESUMO

Adequate primary explosives such as lead azide mostly contain toxic ingredients, which have to be replaced. A new candidate that shows high potential, potassium 1,1'-dinitramino-5,5'-bistetrazolate (K2DNABT), was synthesized by a sophisticated synthetic procedure based on dimethylcarbonate and glyoxal. It was intensively characterized for its chemical (X-ray diffraction, EA, NMR and vibrational spectroscopy) and physico-chemical properties (sensitivity towards impact, friction, and electrostatic, DSC). The obtained primary explosive combines good thermal stability with the desired mechanical stability. Owing to its high heat of formation (326 kJ mol(-1)) and density (2.11 g cm(-3)), impressive values for its detonation velocity (8330 m s(-1)) and pressure (311 kbar) were computed. Its superior calculated performance output was successfully confirmed and demonstrated by different convenient energetic test methods.

6.
Chemistry ; 20(21): 6401-11, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24737545

RESUMO

3,3'-Diamino-4,4'-bifurazane (1), 3,3'-diaminoazo-4,4'-furazane (2), and 3,3'-diaminoazoxy-4,4'-furazane (3) were nitrated in 100 % HNO3 to give corresponding 3,3'-dinitramino-4,4'-bifurazane (4), 3,3'-dinitramino-4,4'-azofurazane (5) and 3,3'-dinitramino-4,4'-azoxyfurazane (6), respectively. The neutral compounds show very imposing explosive performance but possess lower thermal stability and higher sensitivity than hexogen (RDX). More than 40 nitrogen-rich compounds and metal salts were prepared. Most compounds were characterized by low-temperature X-ray diffraction, all of them by infrared and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and by differential scanning calorimetry (DSC). Calculated energetic performances using the EXPLO5 code based on calculated (CBS-4M) heats of formation and X-ray densities support the high energetic performances of the nitraminofurazanes as energetic materials. The sensitivities towards impact, friction, and electrostatic discharge were also explored. Additionally the general toxicity of the anions against vibrio fischeri, representative for an aquatic microorganism, was determined.

7.
Chemistry ; 19(14): 4602-13, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23417994

RESUMO

1-Hydroxy-5-aminotetrazole (1), which is a long-desired starting material for the synthesis of hundreds of new energetic materials, was synthesized for the first time by the reaction of aqueous hydroxylamine with cyanogen azide. The use of this unique precursor was demonstrated by the preparation of several energetic compounds with equal or higher performance than that of commonly used explosives, such as hexogen (RDX). The prepared compounds, including energetic salts of 1-hydroxy-5-aminotetrazole (hydroxylammonium (2, two polymorphs) and ammonium (3)), azo-coupled derivatives (potassium (5), hydroxylammonium (6), ammonium (7), and hydrazinium 5,5'-azo-bis(1-N-oxidotetrazolate (8, two polymorphs)), as well as neutral compounds 5,5'-azo-bis(1-oxidotetrazole) (4) and 5,5'-bis(1-oxidotetrazole)hydrazine (9), were intensively characterized by low-temperature X-ray diffraction, IR, Raman, and multinuclear NMR spectroscopy, elemental analysis, and DSC. The calculated energetic performance, by using the EXPLO5 code, based on the calculated (CBS-4M) heats of formation and X-ray densities confirm the high energetic performance of tetrazole-N-oxides as energetic materials. Last but not least, their sensitivity towards impact, friction, and electrostatic discharge were explored. 5,5'-Azo-bis(1-N-oxidotetrazole) deflagrates close to the DDT (deflagration-to-detonation transition) faster than all compounds that have been investigated in our research group to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...