Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182236

RESUMO

Radar measurements of gravitational mass-movements like snow avalanches have become increasingly important for scientific flow observations, real-time detection and monitoring. Independence of visibility is a main advantage for rapid and reliable detection of those events, and achievable high-resolution imaging proves invaluable for scientific measurements of the complete flow evolution. Existing radar systems are made for either detection with low-resolution or they are large devices and permanently installed at test-sites. We present mGEODAR, a mobile FMCW (frequency modulated continuous wave) radar system for high-resolution measurements and low-resolution gravitational mass-movement detection and monitoring purposes due to a versatile frequency generation scheme. We optimize the performance of different frequency settings with loop cable measurements and show the freespace range sensitivity with data of a car as moving point source. About 15 dB signal-to-noise ratio is achieved for the cable test and about 5 dB or 10 dB for the car in detection and research mode, respectively. By combining continuous recording in the low resolution detection mode with real-time triggering of the high resolution research mode, we expect that mGEODAR enables autonomous measurement campaigns for infrastructure safety and mass-movement research purposes in rapid response to changing weather and snow conditions.

2.
Earth Surf Process Landf ; 43(7): 1373-1389, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30008500

RESUMO

Changing high-mountain environments are characterized by destabilizing ice, rock or debris slopes connected to evolving glacial lakes. Such configurations may lead to potentially devastating sequences of mass movements (process chains or cascades). Computer simulations are supposed to assist in anticipating the possible consequences of such phenomena in order to reduce the losses. The present study explores the potential of the novel computational tool r.avaflow for simulating complex process chains. r.avaflow employs an enhanced version of the Pudasaini (2012) general two-phase mass flow model, allowing consideration of the interactions between solid and fluid components of the flow. We back-calculate an event that occurred in 2012 when a landslide from a moraine slope triggered a multi-lake outburst flood in the Artizón and Santa Cruz valleys, Cordillera Blanca, Peru, involving four lakes and a substantial amount of entrained debris along the path. The documented and reconstructed flow patterns are reproduced in a largely satisfactory way in the sense of empirical adequacy. However, small variations in the uncertain parameters can fundamentally influence the behaviour of the process chain through threshold effects and positive feedbacks. Forward simulations of possible future cascading events will rely on more comprehensive case and parameter studies, but particularly on the development of appropriate strategies for decision-making based on uncertain simulation results. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...