Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 856, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040751

RESUMO

Hyperaccumulators are a group of plant species that accumulate high concentrations of one or more metal(loid)s in their above-ground tissues without showing any signs of toxicity. Several hyperaccumulating species belong to the Brassicaceae family, among them the Cd and Zn hyperaccumulator Noccaea praecox. In this paper, we present de novo transcriptome assembled from two naturally occurring N. praecox populations growing in (i) metal-enriched soil and (ii) soil non-contaminated with metals (control site). Total RNA was extracted from the leaves of both populations. We obtained 801,935,101 reads, which were successfully assembled and annotated. The resulting assembly contains 135,323 transcripts, with 103,396 transcripts (76.4%) annotated with at least one function and encoding 53,142 putative proteins. Due to its close relationship with the hyperaccumulating model species N. cearulescens, it will be possible to derive protein functions from sequence comparisons with this species. Comparisons will highlight common and differing pathways of metal acquisition, storage, and detoxification which will allow us to expand our knowledge of these processes.


Assuntos
Brassicaceae , Metais , Transcriptoma , Brassicaceae/genética , Estudos de Associação Genética , Solo
2.
Plant Commun ; 4(6): 100571, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36883005

RESUMO

Plants adapted to challenging environments offer fascinating models of evolutionary change. Importantly, they also give information to meet our pressing need to develop resilient, low-input crops. With mounting environmental fluctuation-including temperature, rainfall, and soil salinity and degradation-this is more urgent than ever. Happily, solutions are hiding in plain sight: the adaptive mechanisms from natural adapted populations, once understood, can then be leveraged. Much recent insight has come from the study of salinity, a widespread factor limiting productivity, with estimates of 20% of all cultivated lands affected. This is an expanding problem, given increasing climate volatility, rising sea levels, and poor irrigation practices. We therefore highlight recent benchmark studies of ecologically adaptive salt tolerance in plants, assessing macro- and microevolutionary mechanisms, and the recently recognized role of ploidy and the microbiome on salinity adaptation. We synthesize insight specifically on naturally evolved adaptive salt-tolerance mechanisms, as these works move substantially beyond traditional mutant or knockout studies, to show how evolution can nimbly "tweak" plant physiology to optimize function. We then point to future directions to advance this field that intersect evolutionary biology, abiotic-stress tolerance, breeding, and molecular plant physiology.


Assuntos
Tolerância ao Sal , Solo , Tolerância ao Sal/genética , Produtos Agrícolas
3.
New Phytol ; 237(6): 2180-2195, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630602

RESUMO

A warming climate coupled with reductions in water availability and rising salinity are increasingly affecting rice (Oryza sativa) yields. Elevated temperatures combined with vapour pressure deficit (VPD) rises are causing stomatal closure, further reducing plant productivity and cooling. It is unclear what stomatal size (SS) and stomatal density (SD) will best suit all these environmental extremes. To understand how stomatal differences contribute to rice abiotic stress resilience, we screened the stomatal characteristics of 72 traditionally bred varieties. We found significant variation in SS, SD and calculated anatomical maximal stomatal conductance (gsmax ) but did not identify any varieties with SD and gsmax as low as transgenic OsEPF1oe plants. Traditionally bred varieties with high SD and small SS (resulting in higher gsmax ) typically had lower biomasses, and these plants were more resilient to drought than low SD and large SS plants, which were physically larger. None of the varieties assessed were as resilient to drought or salinity as low SD OsEPF1oe transgenic plants. High SD and small SS rice displayed faster stomatal closure during increasing temperature and VPD, but photosynthesis and plant cooling were reduced. Compromises will be required when choosing rice SS and SD to tackle multiple future environmental stresses.


Assuntos
Oryza , Estômatos de Plantas , Oryza/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Estresse Fisiológico , Secas , Água
4.
Plant Physiol ; 190(3): 1715-1730, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929797

RESUMO

Whole-genome duplication generates a tetraploid from a diploid. Newly created tetraploids (neo-tetraploids) of Arabidopsis (Arabidopsis thaliana) have elevated leaf potassium (K), compared to their diploid progenitor. Micro-grafting has previously established that this elevated leaf K is driven by processes within the root. Here, mutational analysis revealed that the K+-uptake transporters K+ TRANSPORTER 1 (AKT1) and HIGH AFFINITY K+ TRANSPORTER 5 (HAK5) are not necessary for the difference in leaf K caused by whole-genome duplication. However, the endodermis and salt overly sensitive and abscisic acid-related signaling were necessary for the elevated leaf K in neo-tetraploids. Contrasting the root transcriptomes of neo-tetraploid and diploid wild-type and mutants that suppress the neo-tetraploid elevated leaf K phenotype allowed us to identify a core set of 92 differentially expressed genes associated with the difference in leaf K between neo-tetraploids and their diploid progenitor. This core set of genes connected whole-genome duplication with the difference in leaf K between neo-tetraploids and their diploid progenitors. The set of genes is enriched in functions such as cell wall and Casparian strip development and ion transport in the endodermis, root hairs, and procambium. This gene set provides tools to test the intriguing idea of recreating the physiological effects of whole-genome duplication within a diploid genome.


Assuntos
Arabidopsis , Tetraploidia , Potássio , Redes Reguladoras de Genes , Arabidopsis/genética , Ploidias , Folhas de Planta/genética
5.
J Exp Bot ; 72(2): 415-425, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33038235

RESUMO

High Arsenic Concentration 1 (HAC1), an Arabidopsis thaliana arsenate reductase, plays a key role in arsenate [As(V)] tolerance. Through conversion of As(V) to arsenite [As(III)], HAC1 enables As(III) export from roots, and restricts translocation of As(V) to shoots. To probe the ability of different root tissues to detoxify As(III) produced by HAC1, we generated A. thaliana lines expressing HAC1 in different cell types. We investigated the As(V) tolerance phenotypes: root growth, As(III) efflux, As translocation, and As chemical speciation. We showed that HAC1 can function in the outer tissues of the root (epidermis, cortex, and endodermis) to confer As(V) tolerance, As(III) efflux, and limit As accumulation in shoots. HAC1 is less effective in the stele at conferring As(V) tolerance phenotypes. The exception is HAC1 activity in the protoxylem, which we found to be sufficient to restrict As translocation, but not to confer As(V) tolerance. In conclusion, we describe cell type-specific functions of HAC1 that spatially separate the control of As(V) tolerance and As translocation. Further, we identify a key function of protoxylem cells in As(V) translocation, consistent with the model where endodermal passage cells, above protoxylem pericycle cells, form a 'funnel' loading nutrients and potentially toxic elements into the vasculature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arsênio , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Redutases , Arseniatos , Raízes de Plantas/genética , Brotos de Planta
6.
PLoS One ; 15(12): e0243892, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33315933

RESUMO

In current literature, data assessing the acid-base equilibrium in animals and humans during bacterial infection are rare. This study aimed to evaluate acid-base deteriorations in growing goats with experimentally induced NTM (nontuberculous mycobacteria) infections by application of the traditional Henderson-Hasselbalch approach and the strong ion model. NTM-challenged animals were orally inoculated with either Mycobacterium avium subsp. hominissuis (MAH; n = 18) or Mycobacterium avium subsp. paratuberculosis (MAP; n = 48). Twenty-five goats served as non-infected controls. Until 51st week post-inoculation (wpi), blood gas analysis, serum biochemical analysis, and serum electrophoresis were performed on venous blood. Fifty percent (9/18) of goats inoculated with MAH developed acute clinical signs like apathy, fever, and diarrhea. Those animals died or had to be euthanized within 11 weeks post-inoculation. This acute form of NTM-infection was characterized by significantly lower concentrations of sodium, calcium, albumin, and total protein, as well as significantly higher concentrations of gamma globulin, associated with reduced albumin/globulin ratio. Acid-base status indicated alkalosis, but normal base excess and HCO3- concentrations, besides significantly reduced levels of SID (strong ion difference), Atot Alb (total plasma concentration of weak non-volatile acids, based on albumin), Atot TP (Atot based on total protein) and markedly lower SIG (strong ion gap). The remaining fifty percent (9/18) of MAH-infected goats and all goats challenged with MAP survived and presented a more sub-clinical, chronic form of infection mainly characterized by changes in serum protein profiles. With the progression of the disease, concentrations of gamma globulin, and total protein increased while albumin remained lower compared to controls. Consequently, significantly reduced albumin/globulin ratio and lower Atot Alb as well as higher Atot TP were observed. Changes were fully compensated with no effect on blood pH. Only the strong ion variables differentiated alterations in acid-base equilibrium during acute and chronic NTM-infection.


Assuntos
Cabras/crescimento & desenvolvimento , Cabras/microbiologia , Infecções por Mycobacterium não Tuberculosas/veterinária , Mycobacterium avium subsp. paratuberculosis/fisiologia , Mycobacterium/fisiologia , Equilíbrio Ácido-Base , Doença Aguda , Albuminas/metabolismo , Animais , Ânions/sangue , Bicarbonatos/metabolismo , Temperatura Corporal , Dióxido de Carbono/metabolismo , Doença Crônica , Feminino , Cabras/sangue , Concentração de Íons de Hidrogênio , Masculino , Metaboloma , Infecções por Mycobacterium não Tuberculosas/sangue , Pressão Parcial
7.
BMC Plant Biol ; 20(1): 368, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758143

RESUMO

BACKGROUND: Phosphorus (P) deficiency limits crop production worldwide. Crops differ in their ability to acquire and utilise the P available. The aim of this study was to determine root traits (root exudates, root system architecture (RSA), tissue-specific allocation of P, and gene expression in roots) that (a) play a role in P-use efficiency and (b) contribute to large shoot zinc (Zn) concentration in Brassica oleracea. RESULTS: Two B. oleracea accessions (var. sabellica C6, a kale, and var. italica F103, a broccoli) were grown in a hydroponic system or in a high-throughput-root phenotyping (HTRP) system where they received Low P (0.025 mM) or High P (0.25 mM) supply for 2 weeks. In hydroponics, root and shoot P and Zn concentrations were measured, root exudates were profiled using both Fourier-Transform-Infrared spectroscopy and gas-chromatography-mass spectrometry and previously published RNAseq data from roots was re-examined. In HTRP experiments, RSA (main and lateral root number and lateral root length) was assessed and the tissue-specific distribution of P was determined using micro-particle-induced-X-ray emission. The C6 accession had greater root and shoot biomass than the F103 accession, but the latter had a larger shoot P concentration than the C6 accession, regardless of the P supply in the hydroponic system. The F103 accession had a larger shoot Zn concentration than the C6 accession in the High P treatment. Although the F103 accession had a larger number of lateral roots, which were also longer than in the C6 accession, the C6 accession released a larger quantity and number of polar compounds than the F103 accession. A larger number of P-responsive genes were found in the Low P treatment in roots of the F103 accession than in roots of the C6 accession. Expression of genes linked with "phosphate starvation" was up-regulated, while those linked with iron homeostasis were down-regulated in the Low P treatment. CONCLUSIONS: The results illustrate large within-species variability in root acclimatory responses to P supply in the composition of root exudates, RSA and gene expression, but not in P distribution in root cross sections, enabling P sufficiency in the two B. oleracea accessions studied.


Assuntos
Brassica/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Hidroponia , Metaboloma , Brotos de Planta
8.
Front Plant Sci ; 10: 1645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998335

RESUMO

Shoot zinc (Zn) concentration in Brassica oleracea is affected by soil Zn and phosphorus (P) supply. Most problematic is the negative impact of P fertilizers on Zn concentrations in crops, which makes balancing yield and mineral quality challenging. To evaluate early molecular mechanisms involved in the accumulation of large shoot Zn concentrations regardless of the P supply, two B. oleracea accessions differing in root architecture and root exudates were grown hydroponically for two weeks with different combinations of P and Zn supply. Ionome profiling and deep RNA sequencing of roots revealed interactions of P and Zn in planta, without apparent phenotypic effects. In addition, increasing P supply did not reduce tissue Zn concentration. Substantial changes in gene expression in response to different P and/or Zn supplies in roots of both accessions ensured nutritionally sufficient P and Zn uptake. Numerous genes were differentially expressed after changing Zn or P supply and most of them were unique to only one accession, highlighting their different strategies in achieving nutrient sufficiency. Thus, different gene networks responded to the changing P and Zn supply in the two accessions. Additionally, enrichment analysis of gene ontology classes revealed that genes involved in lipid metabolism, response to starvation, and anion transport mechanisms were most responsive to differences in P and Zn supply in both accessions. The results agreed with previously studies demonstrating alterations in P and Zn transport and phospholipid metabolism in response to reduced P and Zn supply. It is anticipated that improved knowledge of genes responsive to P or Zn supply will help illuminate the roles in uptake and accumulation of P and Zn and might identify candidate genes for breeding high-yield-high-Zn brassicas.

9.
Biomed Chromatogr ; 32(10): e4285, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29761519

RESUMO

Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L-1 concentration ranges, pre-concentration techniques are required for gas chromatography-mass spectrometry (GC-MS) based analyses. This study was intended to compare the efficiency of established micro-extraction techniques - solid-phase micro-extraction (SPME) and needle-trap micro-extraction (NTME) - for the analysis of complex VOC patterns. For SPME, a 75 µm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi-directionally. Seventy-two VOCs were calibrated by reference standard mixtures in the range of 0.041-62.24 nmol L-1 by means of GC-MS. Both pre-concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L-1 (median = 0.030 nmol L-1 ) for NTME and from 0.001 to 5.684 nmol L-1 (median = 0.043 nmol L-1 ) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N-containing compounds. Micro-extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account.


Assuntos
Técnicas Bacteriológicas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Células Cultivadas , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/análise , Limite de Detecção , Modelos Lineares , Mycobacterium avium/citologia , Mycobacterium avium/metabolismo , Compostos de Nitrogênio/análise , Reprodutibilidade dos Testes , Compostos de Enxofre/análise
10.
PLoS One ; 13(3): e0194348, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558492

RESUMO

BACKGROUND: Species of Mycobacteriaceae cause serious zoonotic diseases in mammals, for example tuberculosis in humans, dogs, parrots, and elephants (caused by Mycobacterium tuberculosis) and in ruminants and humans (caused by M. bovis and M. caprae). Pulmonary diseases, lymphadenitis, skin diseases, and disseminated diseases can be caused by non-tuberculous mycobacteria (NTM). Diagnosis and differentiation among Mycobacterium species are currently done by culture isolation. The established diagnostic protocols comprise several steps that allow species identification. Detecting volatile organic compounds (VOCs) above bacterial cultures is a promising approach towards accelerating species identification via culture isolation. The aims of this project were to analyse VOCs in the headspace above 13 different species of mycobacteria, to define VOC profiles that are unique for each species, and to compile a set of substances that indicate the presence of growing mycobacteria in general. MATERIALS & METHODS: VOCs were measured in the headspace above 17 different mycobacterial strains, all cultivated on Herrold's Egg Yolk Medium and above pure media slants that served as controls. For pre-concentration of VOCs, needle-trap micro-extraction was employed. Samples were subsequently analysed using gas chromatography-mass spectrometry. All volatiles were identified and calibrated by analysing pure reference substances. RESULTS: More than 130 VOCs were detected in headspace above mycobacteria-inoculated and control slants. Results confirmed significant VOC emissions above all mycobacterial species that had grown well. Concentration changes were measurable in vials with visually assessed bacterial growth and vials without apparent growth. VOCs above mycobacterial cultures could be grouped into substances that were either higher or equally concentrated, lower or equally concentrated, or both as those above control slants. Hence, we were able to identify 17 substances as potential biomarkers of the presence of growing mycobacteria in general. CONCLUSIONS: This study revealed species-specific VOC profiles for eleven species of mycobacteria that showed visually apparent bacterial growth at the time point of analysis.


Assuntos
Mycobacterium/classificação , Mycobacterium/metabolismo , Compostos Orgânicos Voláteis/análise , Biomarcadores , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Metabolômica/métodos , Especificidade da Espécie
11.
J Breath Res ; 11(4): 047105, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768897

RESUMO

Modern statistical methods which were developed for pattern recognition are increasingly being used for data analysis in studies on emissions of volatile organic compounds (VOCs). With the detection of disease-related VOC profiles, novel non-invasive diagnostic tools could be developed for clinical applications. However, it is important to bear in mind that not all statistical methods are equally suitable for the investigation of VOC profiles. In particular, univariate methods are not able to discover VOC patterns as they consider each compound separately. The present study demonstrates this fact in practice. Using VOC samples from a controlled animal study on paratuberculosis, the random forest classification method was applied for pattern recognition and disease prediction. This strategy was compared with a prediction approach based on single compounds. Both methods were framed within a cross-validation procedure. A comparison of both strategies based on these VOC data reveals that random forests achieves higher sensitivities and specificities than predictions based on single compounds. Therefore, it will most likely be more fruitful to further investigate VOC patterns instead of single biomarkers for paratuberculosis. All methods used are thoroughly explained to aid the transfer to other data analyses.


Assuntos
Algoritmos , Testes Respiratórios/métodos , Paratuberculose/diagnóstico , Compostos Orgânicos Voláteis/análise , Animais , Biomarcadores/análise , Árvores de Decisões , Modelos Animais de Doenças , Expiração , Fezes/química , Cabras , Sensibilidade e Especificidade
12.
Sci Rep ; 7(1): 3693, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623252

RESUMO

Metal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50% of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0.


Assuntos
Adaptação Biológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Cádmio/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Cádmio/toxicidade , Mapeamento Cromossômico , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Estudos de Associação Genética , Intoxicação por Metais Pesados , Fenótipo
13.
J Breath Res ; 10(3): 037103, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604146

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic granulomatous enteritis in ruminants. Bacterial growth is still the diagnostic 'gold standard', but is very time consuming. MAP-specific volatile organic compounds (VOCs) above media could accelerate cultural diagnosis. The aim of this project was to assess the kinetics of a VOC profile linked to the growth of MAP in vitro. The following sources of variability were taken into account: five different culture media, three different MAP strains, inoculation with different bacterial counts, and different periods of incubation. Needle-trap microextraction was employed for pre-concentration of VOCs, and gas chromatography-mass spectrometry for subsequent analysis. All volatiles were identified and calibrated by analysing pure references at different concentration levels. More than 100 VOCs were measured in headspaces above MAP-inoculated and control slants. Results confirmed different VOC profiles above different culture media. Emissions could be assigned to either egg-containing media or synthetic ingredients. 43 VOCs were identified as potential biomarkers of MAP growth on Herrold's Egg Yolk Medium without significant differences between the tree MAP strains. Substances belonged to the classes of alcohols, aldehydes, esters, ketones, aliphatic and aromatic hydrocarbons. With increasing bacterial density the VOC concentrations above MAP expressed different patterns: the majority of substances increased (although a few decreased after reaching a peak), but nine VOCs clearly decreased. Data support the hypotheses that (i) bacteria emit different metabolites on different culture media; (ii) different MAP strains show uniform VOC patterns; and (iii) cultural diagnosis can be accelerated by taking specific VOC profiles into account.


Assuntos
Técnicas de Cultura de Células/métodos , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Análise de Variância , Animais , Biomarcadores/análise , Contagem de Colônia Microbiana , Meios de Cultura/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética
14.
J Breath Res ; 9(4): 047113, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670078

RESUMO

Physiological processes within the body may change emitted volatile organic compound (VOC) composition, and may therefore cause confounding biological background variability in breath gas analyses. To evaluate the effect of food intake on VOC concentration patterns in exhaled breath, this study assessed the variability of VOC concentrations due to food intake in a standardized caprine animal model. VOCs in (i) alveolar breath gas samples of nine clinically healthy goats and (ii) room air samples were collected and pre-concentrated before morning feeding and repeatedly after (+60 min, +150 min, +240 min) using needle trap microextraction (NTME). Analysis of VOCs was performed by gas chromatography and mass spectrometry (GC-MS). Only VOCs with significantly higher concentrations in breath gas samples compared to room air samples were taken into consideration. Six VOCs that belonged to the chemical classes of hydrocarbons and alcohols were identified presenting significantly different concentrations before and after feeding. Selected hydrocarbons showed a concentration pattern that was characterized by an initial increase 60 min after food intake, and a subsequent gradual decrease. Results emphasize consideration of physiological effects on exhaled VOC concentrations due to food intake with respect to standardized protocols of sample collection and critical evaluation of results.


Assuntos
Testes Respiratórios/métodos , Expiração , Comportamento Alimentar , Compostos Orgânicos Voláteis/análise , Análise de Variância , Animais , Cabras , Masculino , Modelos Animais , Padrões de Referência
15.
J Breath Res ; 9(2): 027108, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971714

RESUMO

Physiological effects may change volatile organic compound (VOC) concentrations and may therefore act as confounding factors in the definition of VOCs as disease biomarkers. To evaluate the extent of physiological background variability, this study assessed the effects of feed composition and somatic growth on VOC patterns in a standardized large animal model. Fifteen clinically healthy goats were followed during their first year of life. VOCs present in the headspace over faeces, exhaled breath and ambient air inside the stable were repeatedly assessed in parallel with the concentrations of glucose, protein, and albumin in venous blood. VOCs were collected and analysed using solid-phase or needle-trap microextraction and gas chromatograpy together with mass spectroscopy. The concentrations of VOCs in exhaled breath and above faeces varied significantly with increasing age of the animals. The largest variations in volatiles detected in the headspace over faeces occurred with the change from milk feeding to plant-based diet. VOCs above faeces and in exhaled breath correlated significantly with blood components. Among VOCs exhaled, the strongest correlations were found between exhaled nonanal concentrations and blood concentrations of glucose and albumin. Results stress the importance of a profound knowledge of the physiological backgrounds of VOC composition before defining reliable and accurate marker sets for diagnostic purposes.


Assuntos
Ração Animal , Fezes/química , Compostos Orgânicos Voláteis/metabolismo , Animais , Biomarcadores , Glicemia , Proteínas Sanguíneas , Testes Respiratórios/métodos , Dieta , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Cabras/crescimento & desenvolvimento , Masculino , Modelos Animais , Albumina Sérica , Compostos Orgânicos Voláteis/análise
16.
PLoS One ; 10(4): e0123980, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915653

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of a chronic enteric disease of ruminants. Available diagnostic tests are complex and slow. In vitro, volatile organic compound (VOC) patterns emitted from MAP cultures mirrored bacterial growth and enabled distinction of different strains. This study was intended to determine VOCs in vivo in the controlled setting of an animal model. VOCs were pre-concentrated from breath and feces of 42 goats (16 controls and 26 MAP-inoculated animals) by means of needle trap microextraction (breath) and solid phase microextraction (feces) and analyzed by gas chromatography/ mass spectrometry. Analyses were performed 18, 29, 33, 41 and 48 weeks after inoculation. MAP-specific antibodies and MAP-specific interferon-γ-response were determined from blood. Identities of all marker-VOCs were confirmed through analysis of pure reference substances. Based on detection limits in the high pptV and linear ranges of two orders of magnitude more than 100 VOCs could be detected in breath and in headspace over feces. Twenty eight substances differed between inoculated and non-inoculated animals. Although patterns of most prominent substances such as furans, oxygenated substances and hydrocarbons changed in the course of infection, differences between inoculated and non-inoculated animals remained detectable at any time for 16 substances in feces and 3 VOCs in breath. Differences of VOC concentrations over feces reflected presence of MAP bacteria. Differences in VOC profiles from breath were linked to the host response in terms of interferon-γ-response. In a perspective in vivo analysis of VOCs may help to overcome limitations of established tests.


Assuntos
Mycobacterium avium subsp. paratuberculosis/metabolismo , Paratuberculose/diagnóstico , Compostos Orgânicos Voláteis/análise , Animais , Testes Respiratórios , Fezes/química , Cabras , Mycobacterium avium subsp. paratuberculosis/química
17.
Environ Sci Technol ; 48(13): 7552-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24869480

RESUMO

Lead (Pb) ranks first among metals with respect to tonnage produced and released into the environment. It is highly toxic and therefore an important pollutant of worldwide concern. Plant Pb uptake, accumulation, and detoxification mobilize Pb into food webs. Still, knowledge about the underlying mechanisms is very limited. This is largely due to serious experimental challenges with respect to Pb availability. In most studies, Pb(II) concentrations in the millimolar range have been used even though the toxicity threshold is in the nanomolar range. We therefore developed a low-phosphate, low-pH assay system that is more realistic with respect to soil solution conditions. In this system the growth of Arabidopsis thaliana seedlings was significantly affected by the addition of only 0.1 µM Pb(NO3)2. Involvement of phytochelatins in the detoxification of Pb(II) could be demonstrated by investigating phytochelatin synthase mutants. They showed a stronger inhibition of root growth and a lack of Pb-activated phytochelatin synthesis. In contrast, other putative Pb hypersensitive mutants were unaffected under these conditions, further supporting the essential role of phytochelatins for Pb detoxification. Our findings demonstrate the need to monitor plant Pb responses at realistic concentrations under controlled conditions and provide a strategy to achieve this.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/metabolismo , Chumbo/farmacocinética , Chumbo/toxicidade , Fitoquelatinas/biossíntese , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Bioensaio , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Inativação Metabólica , Mutação/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Solo/química
18.
Plant J ; 76(1): 151-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23826687

RESUMO

Defects in metal homeostasis factors are often accompanied by the loss of metal tolerance. Therefore, we screened for mutants with compromised growth in the presence of excess Zn(2+) in order to identify factors involved in Zn biology in plants. Here we report the isolation of six ozs (overly Zn sensitive) ethyl methanesulfonate Arabidopsis thaliana mutants with contrasting patterns of metal sensitivity, and the molecular characterization of two mutants hypersensitive specifically to Zn(2+) . Mutant ozs1 represents a non-functional allele of the vacuolar Zn transporter AtMTP1, providing additional genetic evidence for its major role in Zn(2+) tolerance in seedlings. Mutant ozs2 carries a semi-dominant mutation in the gene encoding pectin methylesterase 3 (AtPME3), an enzyme catalyzing demethylesterification of pectin. The mutation results in impaired proteolytic processing of AtPME3. Ectopic expression of AtPME3 causes strong Zn(2+) hypersensitivity that is tightly correlated with transcript abundance. Together these observations suggest detrimental effects on Golgi-localized processes. The ozs2 but not the ozs1 phenotype can be suppressed by extra Ca(2+) , indicating changes in apoplastic cation-binding capacity. However, we did not detect any changes in bulk metal-binding capacity, overall pectin methylesterification status or cell wall ultrastructure in ozs2, leading us to hypothesize that the ozs2 mutation causes hypersensitivity towards the specific interference of Zn ions with cell wall-controlled growth processes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Zinco/toxicidade , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Mutação , Pectinas/metabolismo , Fenótipo , Vacúolos/metabolismo
19.
PLoS Genet ; 9(4): e1003463, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637630

RESUMO

The heteropentameric condensin complexes have been shown to participate in mitotic chromosome condensation and to be required for unperturbed chromatid segregation in nuclear divisions. Vertebrates have two condensin complexes, condensin I and condensin II, which contain the same structural maintenance of chromosomes (SMC) subunits SMC2 and SMC4, but differ in their composition of non-SMC subunits. While a clear biochemical and functional distinction between condensin I and condensin II has been established in vertebrates, the situation in Drosophila melanogaster is less defined. Since Drosophila lacks a clear homolog for the condensin II-specific subunit Cap-G2, the condensin I subunit Cap-G has been hypothesized to be part of both complexes. In vivo microscopy revealed that a functional Cap-G-EGFP variant shows a distinct nuclear enrichment during interphase, which is reminiscent of condensin II localization in vertebrates and contrasts with the cytoplasmic enrichment observed for the other EGFP-fused condensin I subunits. However, we show that this nuclear localization is dispensable for Cap-G chromatin association, for its assembly into the condensin I complex and, importantly, for development into a viable and fertile adult animal. Immunoprecipitation analyses and complex formation studies provide evidence that Cap-G does not associate with condensin II-specific subunits, while it can be readily detected in complexes with condensin I-specific proteins in vitro and in vivo. Mass-spectrometric analyses of proteins associated with the condensin II-specific subunit Cap-H2 not only fail to identify Cap-G but also the other known condensin II-specific homolog Cap-D3. As condensin II-specific subunits are also not found associated with SMC2, our results question the existence of a soluble condensin II complex in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Cromátides/metabolismo , Cromatina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...