Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(26): 261601, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004748

RESUMO

We consider relativistic (2+1)-dimensional quantum field theories (QFTs) on a product of time with a two-space and study the vacuum free energy as a functional of the temperature and spatial geometry. We focus on free scalar and Dirac fields on arbitrary perturbations of flat space, finding that the free energy difference from flat space is finite and always negative to leading order in the perturbation. Thus, free (2+1)-dimensional QFTs appear to always energetically favor a crumpled space on all scales; this is true both as a purely quantum effect at zero temperature and as a purely thermal effect at high temperature. Importantly, we show that this quantum effect is non-negligible for the relativistic Dirac degrees of freedom on monolayer graphene even at room temperature, so we argue that this vacuum energy effect should be included for a proper analysis of the equilibrium configuration of graphene or similar materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...